ترغب بنشر مسار تعليمي؟ اضغط هنا

Invisible decays of the heavier Higgs boson in the minimal supersymmetric standard model

300   0   0.0 ( 0 )
 نشر من قبل Pran Nath Pandita
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, non-universal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson~($h^0$), which is identified with the $126$ GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale.The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.

قيم البحث

اقرأ أيضاً

We study the lightest Higgs boson decays $hrightarrow MZ$ in the framework of the $mu$ from $ u$ supersymmetric standard model ($mu u$SSM), where $M$ is a vector meson $(rho,omega,phi,J/Psi,Upsilon)$. Compared to the minimal supersymmetric standard m odel (MSSM), the $mu u$SSM introduces three right-handed neutrino superfields, which lead to the mixing of the Higgs doublets with the sneutrinos. The mixing affects the lightest Higgs boson mass and the Higgs couplings. Compared to the standard model, the $mu u$SSM can give large new physics contributions to the decay width of $hrightarrow MZ$ in suitable parameter space, which may be detected by the HL-LHC or the other future high energy colliders.
113 - S.W. Ham 2001
The phenomenology of the explicit CP violation in the Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) is investigated, with emphasis on the charged Higgs boson. The radiative corrections due to both quarks and scalar-quarks of the third generation are taken into account, and the negative result of the search for the Higgs bosons at CERN LEP2, with the discovery limit of 0.1 pb, is imposed as a constraint. It is found that there are parameter regions of the NMSSM where the lightest neutral Higgs boson may even be massless, without being detected at LEP2. This implies that the LEP2 data do not contradict the existence of a massless neutral Higgs boson in the NMSSM. For the charged Higgs boson, the radiative corrections to its mass may be negative in some parameter regions of the NMSSM. The phenomenological lower bound on the radiatively corrected mass of the charged Higgs boson is increased as the CP violation becomes maximal, i.e., as the CP violating phase becomes $pi/2$. At the maximal CP violation, its lower bound is about 110 GeV for 5 $leqslant tan beta leqslant$ 40. The vacuum expectation value (VEV) of the neutral Higgs singlet is shown to be no smaller than 16 GeV for any parameter values of the NMSSM with explicit CP violation. This value of the lower limit is found to increase up to about 45 GeV as the ratio ($tan beta$) of the VEVs of the two Higgs doublets decreases to smaller values ($sim$ 2). The discovery limit of the Higgs boson search at LEP2 is found to cover about a half of the kinematically allowed part of the whole parameter space of the NMSSM, and the portion is roughly stable against the CP violating phase.
238 - Howard E. Haber 1997
The Higgs sector of the Minimal Supersymmetric Model (MSSM) is a CP-conserving two-Higgs doublet model that depends, at tree-level, on two Higgs sector parameters. In order to accurately determine the phenomenological implications of this model, one must include the effects of radiative corrections. The leading contributions to the one-loop radiative corrections are exhibited; large logarithms are resummed by the renormalization group method. Implications for Higgs phenomenology are briefly discussed.
The Higgs boson decay into a pair of real or virtual W bosons, with one of them decaying leptonically, is predicted within the Standard Model to have the largest branching fraction of all Higgs decays that involve an isolated electron or muon, for M_ h > 120 GeV. We compute analytically the fully-differential width for this h -> l u jj decay at tree level, and then explore some multi-dimensional cuts that preserve the region of large signal. Future searches for semileptonic decays at the Tevatron and LHC, employing fully-differential information as outlined here, may be essential for ruling out or in the Higgs boson and for characterizing a Higgs signal.
227 - B.C. Allanach , T. Cridge 2017
We describe a major extension of the SOFTSUSY spectrum calculator to include the calculation of the decays, branching ratios and lifetimes of sparticles into lighter sparticles, covering the next-to-minimal supersymmetric standard model (NMSSM) as we ll as the minimal supersymmetric standard model (MSSM). This document acts as a manual for the new version of SOFTSUSY, which includes the calculation of sparticle decays. We present a comprehensive collection of explicit expressions used by the program for the various partial widths of the different decay modes in the appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا