ﻻ يوجد ملخص باللغة العربية
We study the small-scale behavior of generalized two-dimensional turbulence governed by a family of model equations, in which the active scalar $theta=(-Delta)^{alpha/2}psi$ is advected by the incompressible flow $u=(-psi_y,psi_x)$. The dynamics of this family are characterized by the material conservation of $theta$, whose variance $<theta^2>$ is preferentially transferred to high wave numbers. As this transfer proceeds to ever-smaller scales, the gradient $ ablatheta$ grows without bound. This growth is due to the stretching term $( ablathetacdot abla)u$ whose ``effective degree of nonlinearity differs from one member of the family to another. This degree depends on the relation between the advecting flow $u$ and the active scalar $theta$ and is wide ranging, from approximately linear to highly superlinear. Linear dynamics are realized when $ ablau$ is a quantity of no smaller scales than $theta$, so that it is insensitive to the direct transfer of the variance of $theta$, which is nearly passively advected. This case corresponds to $alphage2$, for which the growth of $ ablatheta$ is approximately exponential in time and non-accelerated. For $alpha<2$, superlinear dynamics are realized as the direct transfer of $<theta^2>$ entails a growth in $ ablau$, thereby enhancing the production of $ ablatheta$. This superlinearity reaches the familiar quadratic nonlinearity of three-dimensional turbulence at $alpha=1$ and surpasses that for $alpha<1$. The usual vorticity equation ($alpha=2$) is the border line, where $ ablau$ and $theta$ are of the same scale, separating the linear and nonlinear regimes of the small-scale dynamics. We discuss these regimes in detail, with an emphasis on the locality of the direct transfer.
The strength of the nonlinearity is measured in decaying two-dimensional turbulence, by comparing its value to that found in a Gaussian field. It is shown how the nonlinearity drops following a two-step process. First a fast relaxation is observed on
We numerically investigate the spatial and temporal statistical properties of a dilute polymer solution in the elastic turbulence regime, i.e., in the chaotic flow state occurring at vanishing Reynolds and high Weissenberg numbers. We aim at elucidat
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DN
We report the onset of elastic turbulence in a two-dimensional Taylor-Couette geometry using numerical solutions of the Oldroyd-B model, also performed at high Weissenberg numbers with the program OpenFOAM. Beyond a critical Weissenberg number, an el
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse