ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirically Derived Integrated Stellar Yields of Fe-Peak Elements

50   0   0.0 ( 0 )
 نشر من قبل John J. Cowan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity -- these two elements have opposite slopes -- as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.

قيم البحث

اقرأ أيضاً

The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and alpha element (Mg) chemical abundances for 4666 stars. We used the bimodal distribution of [Mg/Fe] to chemically classify sample stars into different Galactic substructures: thin disc, metal-poor and high-alpha metal rich, high-alpha and low-alpha metal-poor populations. High-alpha and low-alpha metal-poor populations are fully distinct in Mg, Cu, and Zn. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Mn looks different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. [Zn/Fe] trends look very similar to those of [alpha/Fe] trends. The dispersion of results in both discs is low (approx 0.05 dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (approx 0.035 dex). Zn is an alpha-like element and could be used to separate thin and thick disc stars. [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. Some models can partially reproduce the observed Mg, Zn, and, Cu behaviours. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. Very low scatter (approx 0.05 dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration.
We present $gtrsim 15,000$ metal-rich (${rm [Fe/H]}>-0.2$dex) A and F stars whose surface abundances deviate strongly from Solar abundance ratios and cannot plausibly reflect their birth material composition. These stars are identified by their high [Ba/Fe] abundance ratios (${rm [Ba/Fe]}>1.0$dex) in the LAMOST DR5 spectra analyzed by Xiang et al. (2019). They are almost exclusively main sequence and subgiant stars with $T_{rm eff}gtrsim6300$K. Their distribution in the Kiel diagram ($T_{rm eff}$--$log g$) traces a sharp border at low temperatures along a roughly fixed-mass trajectory (around $1.4M_odot)$ that corresponds to an upper limit in convective envelope mass fraction of around $10^{-4}$. Most of these stars exhibit distinctly enhanced abundances of iron-peak elements (Cr, Mn, Fe, Ni) but depleted abundances of Mg and Ca. Rotational velocity measurements from GALAH DR2 show that the majority of these stars rotate slower than typical stars in an equivalent temperature range. These characteristics suggest that they are related to the so-called Am/Fm stars. Their abundance patterns are qualitatively consistent with the predictions of stellar evolution models that incorporate radiative acceleration, suggesting they are a consequence of stellar internal evolution particularly involving the competition between gravitational settling and radiative acceleration. These peculiar stars constitute 40% of the whole population of stars with mass above 1.5$M_odot$, affirming that peculiar photospheric abundances due to stellar evolution effects are a ubiquitous phenomenon for these intermediate-mass stars. This large sample of Ba-enhanced chemically peculiar A/F stars with individual element abundances provides the statistics to test more stringently the mechanisms that alter the surface abundances in stars with radiative envelopes.
Under certain rather prevalent conditions (driven by dynamical orbital evolution), a hierarchical triple stellar system can be well approximated, from the standpoint of orbital parameter estimation, as two binary star systems combined. Even under thi s simplifying approximation, the inference of orbital elements is a challenging technical problem because of the high dimensionality of the parameter space, and the complex relationships between those parameters and the observations (astrometry and radial velocity). In this work we propose a new methodology for the study of triple hierarchical systems using a Bayesian Markov-Chain Monte Carlo-based framework. In particular, graphical models are introduced to describe the probabilistic relationship between parameters and observations in a dynamically self-consistent way. As information sources we consider the cases of isolated astrometry, isolated radial velocity, as well as the joint case with both types of measurements. Graphical models provide a novel way of performing a factorization of the joint distribution (of parameter and observations) in terms of conditional independent components (factors), so that the estimation can be performed in a two-stage process that combines different observations sequentially. Our framework is tested against three well-studied benchmark cases of triple systems, where we determine the inner and outer orbital elements, coupled with the mutual inclination of the orbits, and the individual stellar masses, along with posterior probability (density) distributions for all these parameters. Our results are found to be consistent with previous studies. We also provide a mathematical formalism to reduce the dimensionality in the parameter space for triple hierarchical stellar systems in general.
We explore the structure of the element abundance--age--orbit distribution of the stars in the Milky Ways low-$alpha$ disk, by (re-)deriving precise [Fe/H], [X/Fe] and ages, along with orbits, for red clump stars from the APOGEE survey. There has bee n a long-standing theoretical expectation and observational evidence that metallicity ([Fe/H]) and age are informative about a stars orbit, e.g. about its angular momentum and the corresponding mean Galactocentric distance or its vertical motion. Indeed, our analysis of the APOGEE data confirms that [Fe/H] or age alone can predict the stars orbits far less well than the combination of the two. Remarkably, we find and show explicitly, that for known [Fe/H] and age, the other abundances [X/Fe] of Galactic disk stars can be predicted well (on average to 0.02 dex) across a wide range of Galactocentric radii, and therefore provide little additional information, e.g. for predicting their orbit. While the age-abundance space for metal poor stars and potentially for stars near the Galactic center is rich or complex, for the bulk of the Galaxys low-$alpha$ disk it is simple: [Fe/H] and age contain most information, unless [X/Fe] can be measured to 0.02, or better. Consequently, we do not have the precision with current (and likely near-future) data to assign stars to their individual (coeval) birth clusters, from which the disk is presumably formed. We can, however, place strong constraints on future models of galactic evolution, chemical enrichment and mixing.
42 - Ryan Cooke 2012
The relative abundances of the Fe-peak elements (Ti-Zn) at the lowest metallicities are intimately linked to the physics of core-collapse supernova explosions. With a sample of 25 very metal-poor damped Lyman-alpha systems, we investigate the trends of the Fe-peak element ratios with metallicity. For nine of the 25 DLAs, a direct measurement (or useful upper limit) of one or more of the Ti,Cr,Co,Ni,Zn/Fe abundance ratios could be determined from detected absorption lines. For the remaining systems (without detections), we devised a new form of spectral stacking to estimate the typical Fe-peak element ratios of the DLA population in this metallicity regime. We compare these data to analogous measurements in metal-poor stars of the Galactic halo and to detailed calculations of explosive nucleosynthesis in metal-free stars. We conclude that most of the DLAs in our sample were enriched by stars that released an energy of < 1.2 x 10^51 erg when they exploded as core-collapse supernovae. Finally, we discuss the exciting prospect of measuring Fe-peak element ratios in damped Lyman-alpha systems with Fe/H < 1/1000 of solar when 30-m class telescopes become available. Only then will we be able to pin down the energy that was released by the supernovae of the first stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا