ﻻ يوجد ملخص باللغة العربية
We consider a variation of the spectral sparsification problem where we are required to keep a subgraph of the original graph. Formally, given a union of two weighted graphs $G$ and $W$ and an integer $k$, we are asked to find a $k$-edge weighted graph $W_k$ such that $G+W_k$ is a good spectral sparsifer of $G+W$. We will refer to this problem as the subgraph (spectral) sparsification. We present a nontrivial condition on $G$ and $W$ such that a good sparsifier exists and give a polynomial time algorithm to find the sparsifer. %$O(frac{n}{k})log n tilde{O}(log log n)$ As a significant application of our technique, we show that for each positive integer $k$, every $n$-vertex weighted graph has an $(n-1+k)$-edge spectral sparsifier with relative condition number at most $frac{n}{k} log n tilde{O}(loglog n)$ where $tilde{O}()$ hides lower order terms. Our bound is within a factor of $tilde{O}(log log n)$ from optimal. This nearly settles a question left open by Spielman and Teng about ultrasparsifiers, which is a key component in their nearly linear-time algorithms for solving diagonally dominant symmetric linear systems. We also present another application of our technique to spectral optimization in which the goal is to maximize the algebraic connectivity of a graph (e.g. turn it into an expander) with a limited number of edges.
How might one reduce a graph? That is, generate a smaller graph that preserves the global structure at the expense of discarding local details? There has been extensive work on both graph sparsification (removing edges) and graph coarsening (merging
The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a fruitful approach to the Graph Isomorphism problem. 2-WL corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. 1-WL is the classical color refinement ro
In the group testing problem the aim is to identify a small set of $ksim n^theta$ infected individuals out of a population size $n$, $0<theta<1$. We avail ourselves of a test procedure capable of testing groups of individuals, with the test returning
In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F an
In this paper, we study the tradeoff between the approximation guarantee and adaptivity for the problem of maximizing a monotone submodular function subject to a cardinality constraint. The adaptivity of an algorithm is the number of sequential round