ﻻ يوجد ملخص باللغة العربية
We use mid-IR images from the Spitzer Cygnus~X Legacy Survey to search for stellar bowshocks, a signature of early type runaway stars with high space velocities. We identify ten arc-shaped nebulae containing centrally located stars as candidate bowshocks. New spectroscopic observations of five stars show that all are late O to early B dwarfs. Our morphologically selected sample of bowshock candidates encompasses diverse physical phenomena. Three of the stars appear to be pre-main-sequence objects on the basis of rising SEDs in the mid-IR, and their nebulae may be photon-dominated regions (PDRs). Four objects have ambiguous classification. These may be partial dust shells or bubbles. We conclude that three of the objects are probable bowshocks, based on their morphological similarity to analytic prescriptions. Their nebular morphologies reveal no systematic pattern of orientations that might indicate either a population of stars ejected from or large-scale hydrodynamic outflows from Cyg OB2. The fraction of runaways among OB stars near Cyg OB2 identified either by radial velocity or bowshock techniques is ~0.5%, much smaller than the 8% estimated among field OB stars. We also obtained a heliocentric radial velocity for the previously known bowshock star, BD+43degr3654, of -66.2+/-9.4 km/s, solidifying its runaway status and implying a space velocity of 77+/-10 km/s. We use the principles of momentum-driven bowshocks to arrive at a novel method for estimating stellar mass loss rates. Derived mass loss rates range between 10^-7 and few x10^-6 solar masses/yr for the three O5V -- ~B2V stars identified as generating bowshocks. These values are at the upper range of, but broadly consistent with, estimates from other methods. (Abridged)
Recent observations of the high-mass X-ray binary Cygnus X-1 have shown that both the companion star (41 solar masses) and the black hole (21 solar masses) are more massive than previously estimated. Furthermore, the black hole appears to be nearly m
As the Stars and Stellar Evolution (SSE) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the Sun as a star, stellar ast
The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolut
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.
The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theo