ﻻ يوجد ملخص باللغة العربية
We explore whether the topology of energy landscapes in chemical systems obeys any rules and what these rules are. To answer this and related questions we use several tools: (i)Reduced energy surface and its density of states, (ii) descriptor of structure called fingerprint function, which can be represented as a one-dimensional function or a vector in abstract multidimensional space, (iii) definition of a distance between two structures enabling quantification of energy landscapes, (iv) definition of a degree of order of a structure, and (v) definitions of the quasi-entropy quantifying structural diversity. Our approach can be used for rationalizing large databases of crystal structures and for tuning computational algorithms for structure prediction. It enables quantitative and intuitive representations of energy landscapes and reappraisal of some of the traditional chemical notions and rules. Our analysis confirms the expectations that low-energy minima are clustered in compact regions of configuration space (funnels) and that chemical systems tend to have very few funnels, sometimes only one. This analysis can be applied to the physical properties of solids, opening new ways of discovering structure-property relations. We quantitatively demonstrate that crystals tend to adopt one of the few simplest structures consistent with their chemistry, providing a thermodynamic justification of Paulings fifth rule.
We show that the generalization of the relative entropy of a resource from states to channels is not unique, and there are at least six such generalizations. We then show that two of these generalizations are asymptotically continuous, satisfy a vers
The chemical bond is one of the most powerful, yet controversial concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding has been identified in several higher chalcogenides, characterized by a unique pr
A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation
The excited state dynamics in organic semiconductors plays an important role for many processes associated with light absorption and emission. We have studied the momentum dependence of the lowest singlet excitons in tetracene molecular solids, an ar
A major challenge in the modeling of ionically conducting glasses is to understand how the large variety of possible chemical compositions and specific structural properties influence ionic transport quantities. Here we revisit and extend a theoretic