ﻻ يوجد ملخص باللغة العربية
The general extreme limit of the double-Reissner-Nordstrom solution is worked out in explicit analytical form involving prolate spheroidal coordinates. We name it the combined Majumdar-Papapetrou-Bonnor field to underline the fact that it contains as particular cases the two-body specialization of the well-known Majumdar-Papapetrou solution and Bonnors three-parameter electrostatic field. To the latter we give a precise physical interpretation as describing a pair of non-rotating extremal black holes with unequal masses and unequal opposite charges kept apart by a strut, the absolute values of charges exceeding the respective (positive) values of masses.
The transformation which adds (or removes) NUT charge when it is applied to electrovacuum, axisymmetric and stationary space-times is studied. After analysing the Ehlers and the Reina-Treves transformations we propose a new one, more precise in the p
We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find
The maximally extended Reissner--Nordstrom (RN) manifold with $e^2 < m^2$ begs for attaching a material source to it that would preserve the infinite chain of asymptotically flat regions and evolve through the wormhole between the RN singularities. S
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner - Nordstrom solution. We identify the classical integrals of motio
We study black holes produced by the collapse of a spherically symmetric charged scalar field in asymptotically flat space. We employ a late time expansion and show decaying fluxes of radiation through the event horizon imply the black hole must cont