ﻻ يوجد ملخص باللغة العربية
The transformation which adds (or removes) NUT charge when it is applied to electrovacuum, axisymmetric and stationary space-times is studied. After analysing the Ehlers and the Reina-Treves transformations we propose a new one, more precise in the presence of the Maxwell electromagnetic field. The enhanced Ehlers transformation proposed turns out to act as a gravitomagnetic duality, analogously to the electromagnetic duality, but for gravity: it rotates the mass charge into the gravomagnetic (or NUT) charge. As an example the Kerr-Newman-NUT black hole is obtained with the help of this enhanced transformation. Moreover a new analytical exact solution is built adding the NUT charge to a double charged black hole, at equilibrium. It describes the non-extremal generalisation of the Majumdar-Papapetrou-NUT solution. From the near-horizon analysis, its microscopic entropy, according to the Kerr/CFT correspondence, is found and the second law of black hole thermodynamics is discussed.
We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find
The stationary axisymmetric spacetime coupled to nonlinear Born-Infeld electrodynamics is studied. The solution was derived by Plebanski et al (1984) and it is characterized by six free parameters: mass, NUT charge, electric and magnetic charge, Born
The general extreme limit of the double-Reissner-Nordstrom solution is worked out in explicit analytical form involving prolate spheroidal coordinates. We name it the combined Majumdar-Papapetrou-Bonnor field to underline the fact that it contains as
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einsteins vacuum field equations of Gener
Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotatio