ترغب بنشر مسار تعليمي؟ اضغط هنا

On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide

71   0   0.0 ( 0 )
 نشر من قبل Jonas S\\\"oderholm
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the generation of photon pairs in the 1550-nm band suitable for long-distance fiber-optic quantum key distribution. The photon pairs were generated in a periodically poled lithium niobate waveguide with a high conversion-efficiency. Using a pulsed semiconductor laser with a pulse rate of 800 kHz and a maximum average pump power of 50 muW, we obtained a coincidence rate of 600 s^-1. Our measurements are in agreement with a Poissonian photon-pair distribution, as is expected from a comparison of the coherence time of the pump and of the detected photons. An average of 0.9 photon pairs per pulse was obtained.

قيم البحث

اقرأ أيضاً

In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is possible to simultaneously satisfy the conditions for two spontaneous parametric down-conversion processes, namely ordinary pump photon down-conversion to either extraordinary signal and ordinary idler paired photons, or to ordinary signal and extraordinary idler paired photons. In contrast to single type-II phase-matching, these two processes, when enabled together, can lead to the direct production of cross-polarization-entangled state for non degenerate signal and idler wavelengths. Such a scheme should be of great interest in applications requiring polarization-entangled non degenerate paired photons with, for instance, one of the entangled photons at an appropriate wavelength being used for local operation or for quantum storage in an atomic ensemble, and the other one at the typical wavelength of 1550 nm for propagation through an optical fiber.
The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically-poled thin film lithium niobate microring resonator (PPLNMR) that re aches 5,000,000%/W second harmonic conversion efficiency---almost 20-fold enhancement over the state-of-the-art---by accessing its largest $chi^{(2)}$ tensor component $d_{33}$ via quasi-phase matching. The corresponding single photon coupling rate $g/2pi$ is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rate $kappa/2pi$ of best available lithium niobate microresonators developed in the community. Using a figure of merit defined as $g/kappa$, our devices reach a single photon nonlinearity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single photon nonlinearity to a regime where photon-blockade effect can be manifested.
97 - Wu-Hao Cai , Bei Wei , Shun Wang 2020
We theoretically investigated spectrally uncorrelated biphotons generated in a counter-propagating spontaneous parametric downconversion (CP-SPDC) from periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals. By numerical calculation, it was f ound that the five crystals from the KTP family can be used to generate heralded single photons with high spectral purity and wide tunability. Under the type-0 phase-matching condition, the purity at 1550 nm was between 0.91 and 0.92, and the purity can be maintained over 0.90 from 1500 nm to 2000 nm wavelength. Under the type-II phase-matching condition, the purity at 1550 nm was 0.96, 0.97, 0.97, 0.98, and 0.98 for PPKTP, PPRTP, PPKTA, PPRTA, and PPCTA, respectively; furthermore, the purity can be kept over 0.96 for more than 600 nm wavelength range. We also simulated the Hong-Ou-Mandel interference between independent photon sources for PPRTP crystals at 1550 nm, and interference visibility was 92% (97%) under type-0 (type-II) phase-matching condition. This study may provide spectrally pure narrowband single-photon sources for quantum memories and quantum networks at telecom wavelengths.
We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process wh ere a pump laser at wavelength of 1.55 $mu$m is first doubled in frequency by second harmonic generation and subsequently downconverted around the same spectral region. Pairs are detected at a rate of 42 per second with a coincidence to accidental ratio of 0.7. This cascaded pair generation process is similar to four-wave-mixing where two pump photons annihilate and create a correlated photon pair.
The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively br oad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, g$^{(2)}$(0)=1.9$pm$0.1, indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find use in applications and quantum optics experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا