ﻻ يوجد ملخص باللغة العربية
We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich variety of qualitatively different flows. Depending on the initial data and the parameter values, we prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solutions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time blow-up. Finally, we present numerical simulations of solutions.
In this technical report, we consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the p
We investigate the large time behavior of compactly supported solutions for a one-dimensional thin-film equation with linear mobility in the regime of partial wetting. We show the stability of steady state solutions. The proof uses the Lagrangian coo
In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding
We study short--time existence, long--time existence, finite speed of propagation, and finite--time blow--up of nonnegative solutions for long-wave unstable thin film equations $h_t = -a_0(h^n h_{xxx})_x - a_1(h^m h_x)_x$ with $n>0$, $a_0 > 0$, and $
We consider the Cauchy problem for the nonlinear wave equation $u_{tt} - Delta_x u +q(t, x) u + u^3 = 0$ with smooth potential $q(t, x) geq 0$ having compact support with respect to $x$. The linear equation without the nonlinear term $u^3$ and potent