ﻻ يوجد ملخص باللغة العربية
We calculate the shear viscosity of strongly coupled field theories dual to Gauss-Bonnet gravity at zero temperature with nonzero chemical potential. We find that the ratio of the shear viscosity over the entropy density is $1/4pi$, which is in accordance with the zero temperature limit of the ratio at nonzero temperatures. We also calculate the DC conductivity for this system at zero temperature and find that the real part of the DC conductivity vanishes up to a delta function, which is similar to the result in Einstein gravity. We show that at zero temperature, we can still have the conclusion that the shear viscosity is fully determined by the effective coupling of transverse gravitons in a kind of theories that the effective action of transverse gravitons can be written into a form of minimally coupled scalars with a deformed effective coupling.
Using the Sens mechanism we calculate the entropy for an $AdS_{2}times S^{d-2}$ extremal and static black hole in four dimensions, with higher derivative terms that comes from a three parameter non-minimal Einstein-Maxwell theory. The explicit result
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low t
The ratio of the shear viscosity to the entropy density is calculated for non-extremal Gauss-Bonnet (GB) black holes coupled to Born-Infeld (BI) electrodynamics in $5$ dimensions. The result is found to get corrections from the BI parameter and is an
Einsteins General Relativity theory simplifies dramatically in the limit that the spacetime dimension D is very large. This could still be true in the gravity theory with higher derivative terms. In this paper, as the first step to study the gravity
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure E