ﻻ يوجد ملخص باللغة العربية
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low temperatures. We find that the temperature dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet coupling parameter for a given value of the Lifshitz scaling parameter. We propose that this class of models is dual to a class of models of non-Fermi-liquid systems proposed by Castro-Neto et.al.
Einsteins General Relativity theory simplifies dramatically in the limit that the spacetime dimension D is very large. This could still be true in the gravity theory with higher derivative terms. In this paper, as the first step to study the gravity
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure E
Einstein-Gauss-Bonnet theory is a string-generated gravity theory when approaching the low energy limit. By introducing the higher order curvature terms, this theory is supposed to help to solve the black hole singularity problem. In this work, we in
We report the existence of unstable, s-wave modes, for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that in the transverse section are black holes of
Using the Sens mechanism we calculate the entropy for an $AdS_{2}times S^{d-2}$ extremal and static black hole in four dimensions, with higher derivative terms that comes from a three parameter non-minimal Einstein-Maxwell theory. The explicit result