ﻻ يوجد ملخص باللغة العربية
In this remark, we give another approach to the local well-posedness of quadratic Schrodinger equation with nonlinearity $ubar u$ in $H^{-1/4}$, which was already proved by Kishimoto cite{kis}. Our resolution space is $l^1$-analogue of $X^{s,b}$ space with low frequency part in a weaker space $L^{infty}_{t}L^2_x$. Such type spaces was developed by Guo. cite{G} to deal the KdV endpoint $H^{-3/4}$ regularity.
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in $H^{-3/4}(R)$ and the modified Korteweg-de Vries initial-value problem is globally well-posed in $H^{1/4}(R)$. The new ingredient is that we use directly the contract
We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in $H^{-1}(mathbb{R})$. By comparison, the optimal regularity for well-posedness on the torus is known to be $L^2(mathbb{R}/mathbb{Z})$.
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
The initial-boundary value problem (IBVP) for the nonlinear Schrodinger (NLS) equation on the half-plane with nonzero boundary data is studied by advancing a novel approach recently developed for the well-posedness of the cubic NLS on the half-line,