ترغب بنشر مسار تعليمي؟ اضغط هنا

Well-Posedness of the Nonlinear Schrodinger Equation on the Half-Plane

177   0   0.0 ( 0 )
 نشر من قبل Alex Himonas A.
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The initial-boundary value problem (IBVP) for the nonlinear Schrodinger (NLS) equation on the half-plane with nonzero boundary data is studied by advancing a novel approach recently developed for the well-posedness of the cubic NLS on the half-line, which takes advantage of the solution formula produced by the unified transform of Fokas for the associated linear IBVP. For initial data in Sobolev spaces on the half-plane and boundary data in Bourgain spaces arising naturally when the linear IBVP is solved with zero initial data, the present work provides a local well-posedness result for NLS initial-boundary value problems in higher dimensions.



قيم البحث

اقرأ أيضاً

We consider the derivative nonlinear Schrodinger equation in one space dimension, posed both on the line and on the circle. This model is known to be completely integrable and $L^2$-critical with respect to scaling. The first question we discuss is whether ensembles of orbits with $L^2$-equicontinuous initial data remain equicontinuous under evolution. We prove that this is true under the restriction $M(q)=int |q|^2 < 4pi$. We conjecture that this restriction is unnecessary. Further, we prove that the problem is globally well-posed for initial data in $H^{1/6}$ under the same restriction on $M$. Moreover, we show that this restriction would be removed by a successful resolution of our equicontinuity conjecture.
The initial value problem for the $L^{2}$ critical semilinear Schrodinger equation in $R^n, n geq 3$ is considered. We show that the problem is globally well posed in $H^{s}({Bbb R^{n}})$ when $1>s>frac{sqrt{7}-1}{3}$ for $n=3$, and when $1>s> frac{- (n-2)+sqrt{(n-2)^2+8(n-2)}}{4}$ for $n geq 4$. We use the ``$I$-method combined with a local in time Morawetz estimate.
151 - Chengchun Hao 2008
In this paper, we investigate the one-dimensional derivative nonlinear Schrodinger equations of the form $iu_t-u_{xx}+ilambdaabs{u}^k u_x=0$ with non-zero $lambdain Real$ and any real number $kgs 5$. We establish the local well-posedness of the Cauch y problem with any initial data in $H^{1/2}$ by using the gauge transformation and the Littlewood-Paley decomposition.
This paper is devoted to proving the almost global solvability of the Cauchy problem for the Kirchhoff equation in the Gevrey space $gamma^s_{eta,L^2}$. Furthermore, similar results are obtained for the initial-boundary value problems in bounded domains and in exterior domains with compact boundary.
262 - Zihua Guo , Yuzhao Wang 2009
We prove that the Cauchy problem for the Schrodinger-Korteweg-de Vries system is locally well-posed for the initial data belonging to the Sovolev spaces $L^2(R)times H^{-{3/4}}(R)$. The new ingredient is that we use the $bar{F}^s$ type space, introdu ced by the first author in cite{G}, to deal with the KdV part of the system and the coupling terms. In order to overcome the difficulty caused by the lack of scaling invariance, we prove uniform estimates for the multiplier. This result improves the previous one by Corcho and Linares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا