ترغب بنشر مسار تعليمي؟ اضغط هنا

On the global triggering mechanism of star formation in galaxies

99   0   0.0 ( 0 )
 نشر من قبل Andres Escala
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andres Escala




اسأل ChatGPT حول البحث

We study the large-scale triggering of star formation in galaxies. We find that the largest mass-scale not stabilized by rotation, a well defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star formation rate in a wide range of galaxies. We find that this relation can be explained in terms of the threshold for stability and the amount of turbulence allowed to sustain the system in equilibrium. Using this relation we also derived the observed correlation between the star formation rate and the luminosity of the brightest young stellar cluster.

قيم البحث

اقرأ أيضاً

195 - Lijie Liu , Yu Gao 2011
We study the global star formation law - the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (10^9-10^12 Lsun), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 um) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationship. We find that the galaxy disk-averaged surface densities of dense molecular gas mass has the tightest correlation with that of SFR (scatter ~ 0.26 dex), and is linear in log-log space (power-law slope of N=1.03 +/- 0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (~ 0.48 dex), and is best fit by a power-law with slope 1.45 +/- 0.02. However, the slope changes from ~ 1 when only normal spirals are considered, to ~ 1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.
Using a sample of BzK-selected galaxies at z~2 identified from the CFHT/WIRCAM near-infrared survey of GOODS-North, we discuss the relation between star formation rate (SFR), specific star formation rate (SSFR), and stellar mass (M_{*}), and the clus tering of galaxies as a function of these parameters. For star-forming galaxies (sBzKs), the UV-based SFR, corrected for extinction, scales with the stellar mass as SFR ~ M_{*}^{alpha} with alpha = 0.74+/-0.20 down to M_{*} ~ 10^{9} M_{solar}, indicating a weak dependence on the stellar mass of the SSFR. We also measure the angular correlation function and hence infer the correlation length for sBzK galaxies as a function of M_{*}, SFR, and SSFR, as well as K-band apparent magnitude. We show that passive galaxies (pBzKs) are more strongly clustered than sBzK galaxies at a given stellar mass, mirroring the color-density relation seen at lower redshifts. We also find that the correlation length of sBzK galaxies ranges from 4 to 20 h^{-1}Mpc, being a strong function of M_{K}, M_{*}, and SFR. On the other hand, the clustering dependence on SSFR changes abruptly at 2x10^{-9} yr^{-1}, which is the typical value for main sequence star-forming galaxies at z~2. We show that the correlation length reaches a minimum at this characteristic value, and is larger for galaxies with both smaller and larger SSFRs; a dichotomy that is only marginally implied from the predictions of the semi-analytical models. Our results suggest that there are two types of environmental effects at work at z~2. Stronger clustering for relatively quiescent galaxies implies that the environment has started to play a role in quenching star formation. At the same time, stronger clustering for galaxies with elevated SSFRs (starbursts) might be attributed to an increased efficiency for galaxy interactions and mergers in dense environments.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ ment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
Azimuthal color (age) gradients across spiral arms are one of the main predictions of density wave theory; gradients are the result of star formation triggering by the spiral waves. In a sample of 13 spiral galaxies of types A and AB, we find that 10 of them present regions that match the theoretical predictions. By comparing the observed gradients with stellar population synthesis models, the pattern speed and the location of major resonances have been determined. The resonance positions inferred from this analysis indicate that 9 of the objects have spiral arms that extend to the outer Lindblad resonance (OLR); for one of the galaxies, the spiral arms reach the corotation radius. The effects of dust, and of stellar densities, velocities, and metallicities on the color gradients are also discussed.
93 - Ian A. Bonnell 2006
We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinet ic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا