ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiral density wave triggering of star formation in SA and SAB galaxies

79   0   0.0 ( 0 )
 نشر من قبل Eric E. Mart\\'inez-Garc\\'ia
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Azimuthal color (age) gradients across spiral arms are one of the main predictions of density wave theory; gradients are the result of star formation triggering by the spiral waves. In a sample of 13 spiral galaxies of types A and AB, we find that 10 of them present regions that match the theoretical predictions. By comparing the observed gradients with stellar population synthesis models, the pattern speed and the location of major resonances have been determined. The resonance positions inferred from this analysis indicate that 9 of the objects have spiral arms that extend to the outer Lindblad resonance (OLR); for one of the galaxies, the spiral arms reach the corotation radius. The effects of dust, and of stellar densities, velocities, and metallicities on the color gradients are also discussed.

قيم البحث

اقرأ أيضاً

93 - Ian A. Bonnell 2006
We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinet ic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.
98 - Andres Escala 2009
We study the large-scale triggering of star formation in galaxies. We find that the largest mass-scale not stabilized by rotation, a well defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star format ion rate in a wide range of galaxies. We find that this relation can be explained in terms of the threshold for stability and the amount of turbulence allowed to sustain the system in equilibrium. Using this relation we also derived the observed correlation between the star formation rate and the luminosity of the brightest young stellar cluster.
186 - Marita Krause 2009
The main observational results from radio continuum and polarization observations about the magnetic field strength and large-scale pattern for face-on and edge-on spiral galaxies are summarized and compared within our sample of galaxies of different morphological types, inclinations, and star formation rates (SFR). We found that galaxies with low SFR have higher thermal fractions/smaller synchrotron fractions than those with normal or high SFR. Adopting an equipartition model, we conclude that the nonthermal radio emission and the emph{total magnetic field} strength grow nonlinearly with SFR, while the regular magnetic field strength does not seem to depend on SFR. We also studied the magnetic field structure and disk thicknesses in highly inclined (edge-on) galaxies. We found in four galaxies that - despite their different radio appearance - the vertical scale heights for both, the thin and thick disk/halo, are about equal (0.3/1.8 kpc at 4.75 GHz), independently of their different SFR. This implies that all these galaxies host a galactic wind, in which the bulk velocity of the cosmic rays (CR) is determined by the total field strength within the galactic disk. The galaxies in our sample also show a similar large-scale magnetic field configuration, parallel to the midplane and X-shaped further away from the disk plane, independent of Hubble type and SFR in the disk. Hence we conclude that also the large-scale magnetic field pattern does not depend on the amount of SFR.
95 - Si-Yue Yu , Luis C. Ho , 2021
We investigate the impact of spiral structure on global star formation using a sample of 2226 nearby bright disk galaxies. Examining the relationship between spiral arms, star formation rate (SFR), and stellar mass, we find that arm strength correlat es well with the variation of SFR as a function of stellar mass. Arms are stronger above the star-forming galaxy main sequence (MS) and weaker below it: arm strength increases with higher $log,({rm SFR}/{rm SFR}_{rm MS})$, where ${rm SFR}_{rm MS}$ is the SFR along the MS. Likewise, stronger arms are associated with higher specific SFR. We confirm this trend using the optical colors of a larger sample of 4378 disk galaxies, whose position on the blue cloud also depends systematically on spiral arm strength. This link is independent of other galaxy structural parameters. For the subset of galaxies with cold gas measurements, arm strength positively correlates with HI and H$_2$ mass fraction, even after removing the mutual dependence on $log,({rm SFR}/{rm SFR}_{rm MS})$, consistent with the notion that spiral arms are maintained by dynamical cooling provided by gas damping. For a given gas fraction, stronger arms lead to higher $log,({rm SFR}/{rm SFR}_{rm MS})$, resulting in a trend of increasing arm strength with shorter gas depletion time. We suggest a physical picture in which the dissipation process provided by gas damping maintains spiral structure, which, in turn, boosts the star formation efficiency of the gas reservoir.
We investigate star formation along the Hubble sequence using the ISO Atlas of Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. Fir st, star formation activity is stronger in late-type (Sc - Scd) spirals than in early-type (Sa - Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later-type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in LINERs and transition objects compared to HII galaxies. The mean star formation rate in the sample is 1.4 Msun/yr based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4 x 10^8 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt Law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا