ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Effectiveness Of ELearning In Maintenance Using Interactive 3D

163   0   0.0 ( 0 )
 نشر من قبل R Doomun
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In aerospace and defense, training is being carried out on the web by viewing PowerPoint presentations, manuals and videos that are limited in their ability to convey information to the technician. Interactive training in the form of 3D is a more cost effective approach compared to creation of physical simulations and mockups. This paper demonstrates how training using interactive 3D simulations in elearning achieves a reduction in the time spent in training and improves the efficiency of a trainee performing the installation or removal.



قيم البحث

اقرأ أيضاً

Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching f ormat from the conventional classroom setting. We see two research opportunities here. Students may have diverse expertise and experience in programming. Thus, particular content and teaching speed can be disengaging for experienced students or discouraging for novice learners. In a large classroom, instructors cannot oversee the learning progress of each student, and have difficulty matching teaching materials with the comprehension level of individual students. We present ClassCode, a web-based environment tailored to programming education in classrooms. Students can take online tutorials prepared by instructors at their own pace. They can then deepen their understandings by performing interactive coding exercises interleaved within tutorials. ClassCode tracks all interactions by each student, and summarizes them to instructors. This serves as a progress report, facilitating the instructors to provide additional explanations in-situ or revise course materials. Our user evaluation through a small lecture and expert review by instructors and teaching assistants confirm the potential of ClassCode by uncovering how it could address issues in existing programming courses at universities.
AI models and services are used in a growing number of highstakes areas, resulting in a need for increased transparency. Consistent with this, several proposals for higher quality and more consistent documentation of AI data, models, and systems have emerged. Little is known, however, about the needs of those who would produce or consume these new forms of documentation. Through semi-structured developer interviews, and two document creation exercises, we have assembled a clearer picture of these needs and the various challenges faced in creating accurate and useful AI documentation. Based on the observations from this work, supplemented by feedback received during multiple design explorations and stakeholder conversations, we make recommendations for easing the collection and flexible presentation of AI facts to promote transparency.
Educational software data promises unique insights into students study behaviors and drivers of success. While much work has been dedicated to performance prediction in massive open online courses, it is unclear if the same methods can be applied to blended courses and a deeper understanding of student strategies is often missing. We use pattern mining and models borrowed from Natural Language Processing (NLP) to understand student interactions and extract frequent strategies from a blended college course. Fine-grained clickstream data is collected through Diderot, a non-commercial educational support system that spans a wide range of functionalities. We find that interaction patterns differ considerably based on the assessment type students are preparing for, and many of the extracted features can be used for reliable performance prediction. Our results suggest that the proposed hybrid NLP methods can provide valuable insights even in the low-data setting of blended courses given enough data granularity.
Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on ex plainability. Explainability attempts to provide reasons for a machine learning models behavior to stakeholders. However, understanding a models specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.
Cartograms are map-based data visualizations in which the area of each map region is proportional to an associated numeric data value (e.g., population or gross domestic product). A cartogram is called contiguous if it conforms to this area principle while also keeping neighboring regions connected. Because of their distorted appearance, contiguous cartograms have been criticized as difficult to read. Some authors have suggested that cartograms may be more legible if they are accompanied by interactive features (e.g., animations, linked brushing, or infotips). We conducted an experiment to evaluate this claim. Participants had to perform visual analysis tasks with interactive and noninteractive contiguous cartograms. The task types covered various aspects of cartogram readability, ranging from elementary lookup tasks to synoptic tasks (i.e., tasks in which participants had to summarize high-level differences between two cartograms). Elementary tasks were carried out equally well with and without interactivity. Synoptic tasks, by contrast, were more difficult without interactive features. With access to interactivity, however, most participants answered even synoptic questions correctly. In a subsequent survey, participants rated the interactive features as easy to use and helpful. Our study suggests that interactivity has the potential to make contiguous cartograms accessible even for those readers who are unfamiliar with interactive computer graphics or do not have a prior affinity to working with maps. Among the interactive features, animations had the strongest positive effect, so we recommend them as a minimum of interactivity when contiguous cartograms are displayed on a computer screen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا