ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of pseudogap formation on the penetration depth of underdoped high $T_c$ cuprates

232   0   0.0 ( 0 )
 نشر من قبل Elisabeth Nicol
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described within a model based on the resonating valence bond spin liquid which provides an ansatz for the coherent piece of the Greens function. Fermi surface reconstruction, which is an essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in magnitude, but does not change the slope of the linear low temperature variation. Comparison with recent data on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid models.



قيم البحث

اقرأ أيضاً

The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the antiferromagnetic Brillouin zone. By contrast, superconductivity develops on the Fermi surface and this largely restores the particle-hole symmetry for energies below the superconducting energy gap scale. In the highly underdoped regime, these two scales can be separately identified in the density of states and also partial density of states for each fixed angle in the Brillouin zone. From the total density of states, we find that the pseudogap energy scale manifests itself differently as a function of doping for positive and negative bias. Furthermore, we find evidence from recent scanning tunneling spectroscopy data for asymmetry in the positive and negative bias of the extracted $Delta(theta)$ which is in qualitative agreement with this model. Likewise, the slope of the linear low energy density of states is nearly constant in the underdoped regime while it increases significantly with overdoping in agreement with the data.
The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the res onating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, $x$, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains $1+x$ hole states) to the Luttinger pocket (which contains $x$ hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.
We have used pulsed magnetic fields up to 60Tesla to suppress the contribution of superconducting fluctuations(SCF)to the conductivity above Tc in a series of YBa2Cu3O6+x from the deep pseudogapped state to slight overdoping. Accurate determinations of the SCF conductivity versus temperature and magnetic field have been achieved. Their joint quantitative analyses with respect to Nernst data allow us to establish that thermal fluctuations following the Ginzburg-Landau(GL) scheme are dominant for nearly optimally doped samples. The deduced coherence length xi(T) is in perfect agreement with a gaussian (Aslamazov-Larkin) contribution for 1.01Tc<T<1.2Tc. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. For all dopings we evidence that the fluctuations are highly damped when increasing T or H. The data permits us to define a field Hc^prime and a temperature Tc^prime above which the SCF are fully suppressed. The analysis of the fluctuation magnetoconductance in the GL approach allows us to determine the critical field Hc2(0). The actual values of Hc^prime(0) and Hc2(0) are found quite similar and both increase with hole doping. These depairing fields, which are directly connected to the magnitude of the SC gap, do therefore follow the Tc variation which is at odds with the sharp decrease of the pseudogap T* with increasing hole doping. This is on line with our previous evidence that T* is not the onset of pairing. We finally propose a three dimensional phase diagram including a disorder axis, which allows to explain most peculiar observations done so far on the diverse cuprate families.
178 - E.V.L. de Mello 2001
We report simultaneous hydrostatic pressure studies on the critical temperature $T_c$ and on the pseudogap temperature $T^*$ performed through resistivity measurements on an optimally doped high-$T_c$ oxide $Hg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+delta}$ . The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both $T_c$ and $T^*$ increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on $T_c$ is also present at $T^*$ and both temperatures are originated by the same superconducting mechanism.
One of the most intriguing aspects of cuprates is a large pseudogap coexisting with a high superconducting transition temperature. Here, we study pairing in the cuprates from electron-electron interactions by constructing the pair vertex using spectr al functions derived from angle resolved photoemission data for a near optimal doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ sample that has a pronounced pseudogap. Assuming that that the pseudogap is {it not} due to pairing, we find that the superconducting instability is strongly suppressed, in stark contrast to what is actually observed. Using an analytic approximation for the spectral functions, we can trace this suppression to the destruction of the BCS logarithmic singularity from a combination of the pseudogap and lifetime broadening. Our findings strongly support those theories of the cuprates where the pseudogap is instead due to pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا