ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical problems and perspectives

60   0   0.0 ( 0 )
 نشر من قبل Combes Francoise
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francoise Combes




اسأل ChatGPT حول البحث

This talk tries to summarise where we are now, in the nature and nurture questions in galaxy formation and evolution, and briefly describe unsolved problems, and perspectives of progress.

قيم البحث

اقرأ أيضاً

The present manuscript summarizes the modern view on the problem of the graphene-metal interaction. Presently, the close-packed surfaces of d metals are used as templates for the preparation of highly-ordered graphene layers. Different classification s can be introduced for these systems: graphene on lattice-matched and graphene on lattice-mismatched surfaces where the interaction with the metallic substrate can be either strong or weak. Here these classifications, with the focus on the specific features in the electronic structure in all cases, are considered on the basis of large amounts of experimental and theoretical data, summarized and discussed. The perspectives of the graphene-metal interface in fundamental and applied physics and chemistry are pointed out.
In this paper we collect some open set-theoretic problems that appear in the large-scale topology (called also Asymptology). In particular we ask problems about critical cardinalities of some special (large, indiscrete, inseparated) coarse structures on $omega$, about the interplay between properties of a coarse space and its Higson corona, about some special ultrafilters ($T$-points and cellular $T$-points) related to finitary coarse structures on $omega$, about partitions of coarse spaces into thin pieces, and also about coarse groups having some extremal properties.
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcement learning algorithms that utilize previously collected data, without additio nal online data collection. Offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines. Effective offline reinforcement learning methods would be able to extract policies with the maximum possible utility out of the available data, thereby allowing automation of a wide range of decision-making domains, from healthcare and education to robotics. However, the limitations of current algorithms make this difficult. We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods, and describe some potential solutions that have been explored in recent work to mitigate these challenges, along with recent applications, and a discussion of perspectives on open problems in the field.
Recent cosmic microwave background data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe effe ct from cosmic microwave background anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the cosmic microwave background, such as the lack of power at low multipoles, the primordial power spectrum and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early Universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation analyses aimed at testing the Einstein equivalence principle are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future cosmic microwave background spectral distortion experiments.
52 - P.Schuck 2018
This contribution gives a short review of recent theoretical advances in most topics of nuclear cluster physics concentrating, however, around {$alpha$} particle clustering. Along the route, the point of view will be critical mentioning not only progress but also failures and open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا