ﻻ يوجد ملخص باللغة العربية
A Cayley graph is said to be an NNN-graph if it is both normal and non-normal for isomorphic regular groups, and a group has the NNN-property if there exists an NNN-graph for it. In this paper we investigate the NNN-property of cyclic groups, and show that cyclic groups do not have the NNN-property.
A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to a subset $S$ of $G$ is called normal if the right regular representation of $G$ is a normal subgroup in the full automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if for every
A finite group $G$ is called a Schur group, if any Schur ring over $G$ is the transitivity module of a permutation group on the set $G$ containing the regular subgroup of all right translations. It was proved by R. Poschel (1974) that given a prime $
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_
A subset $B$ of an Abelian group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=a-b$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the diffe
A conjecture of Leader, Russell and Walters in Euclidean Ramsey theory says that a finite set is Ramsey if and only if it is congruent to a subset of a set whose symmetry group acts transitively. As they have shown the ``if direction of their conject