ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization in discrete-time networks with general pairwise coupling

80   0   0.0 ( 0 )
 نشر من قبل Frank Bauer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider complete synchronization of identical maps coupled through a general interaction function and in a general network topology where the edges may be directed and may carry both positive and negative weights. We define mixed transverse exponents and derive sufficient conditions for local complete synchronization. The general non-diffusive coupling scheme can lead to new synchronous behavior, in networks of identical units, that cannot be produced by single units in isolation. In particular, we show that synchronous chaos can emerge in networks of simple units. Conversely, in networks of chaotic units simple synchronous dynamics can emerge; that is, chaos can be suppressed through synchrony.



قيم البحث

اقرأ أيضاً

Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks bot h analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analyt ic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers.
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its tw o units by two competing mechanisms: An exponential decrease of the coupling strength is compensated by an increase due to de-synchronized activity. This mechanism prevents the network from reaching a steady state. Numerical simulations of a coupled map lattice show chaotic trajectories of de-synchronized units interrupted by pulses of mutually synchronized clusters. These pulses occur on all scales, sometimes extending to the entire network. Clusters of synchronized units can be triggered by a small group of synchronized units.
We derive rigorous conditions for the synchronization of all-optically coupled lasers. In particular, we elucidate the role of the optical coupling phases for synchronizability by systematically discussing all possible network motifs containing two l asers with delayed coupling and feedback. Hereby we explain previous experimental findings. Further, we study larger networks and elaborate optimal conditions for chaos synchronization. We show that the relative phases between lasers can be used to optimize the effective coupling matrix.
Recent studies show indication of the effectiveness of synchronization as a data assimilation tool for small or meso-scale forecast when less number of variables are observed frequently. Our main aim here is to understand the effects of changing obse rvational frequency and observational noise on synchronization and prediction in a low dimensional chaotic system, namely the Chua circuit model. We perform {it identical twin experiments} in order to study synchronization using discrete-in-time observations generated from independent model run and coupled unidirectionally to the model through $x$, $y$ and $z$ separately. We observe synchrony in a finite range of coupling constant when coupling the x and y variables of the Chua model but not when coupling the z variable. This range of coupling constant decreases with increasing levels of noise in the observations. The Chua system does not show synchrony when the time gap between observations is greater than about one-seventh of the Lyapunov time. Finally, we also note that prediction errors are much larger when noisy observations are used than when using observations without noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا