ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of CIV Emission Filaments in M87

47   0   0.0 ( 0 )
 نشر من قبل William B. Sparks
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gas at intermediate temperature between the hot X-ray emitting coronal gas in galaxies at the centers of galaxy clusters, and the much cooler optical line emitting filaments, yields information on transport processes and plausible scenarios for the relationship between X-ray cool cores and other galactic phenomena such as mergers or the onset of an active galactic nucleus. Hitherto, detection of intermediate temperature gas has proven elusive. Here, we present FUV imaging of the low excitation emission filaments of M87 and show strong evidence for the presence of CIV 1549 A emission which arises in gas at temperature ~10^5K co-located with Halpha+[NII] emission from cooler ~10^4K gas. We infer that the hot and cool phases are in thermal communication, and show that quantitatively the emission strength is consistent with thermal conduction, which in turn may account for many of the observed characteristics of cool core galaxy clusters.

قيم البحث

اقرأ أيضاً

Radio and optical images of the M87 jet show bright filaments, twisted into an apparent double helix, extending from HST-1 to knot A. Proper motions within the jet suggest a decelerating jet flow passing through a slower, accelerating wave pattern. W e use these observations to develop a mass and energy flux conserving model describing the jet flow and conditions along the jet. We determine the cocoon conditions required if the twisted filaments are the result of the Kelvin-Helmholtz (KH) unstable elliptical mode. We find that the cocoon must be cooler than the jet at HST-1 but must be about as hot as the jet at knot A. Under these conditions we find that the observed filament wavelength is near the elliptical mode maximum growth rate and growth is rapid enough for the filaments to develop and saturate well before HST-1. We generate a pseudo-synchrotron image of a model jet carrying a combination of normal modes of the KH instability. The pseudo-synchrotron image of the jet reveals: (1) that a slow decline in the model jets surface brightness is still about five times faster than the real jet; (2) that KH produced dual helically twisted filaments can appear qualitatively similar to those on the real jet if any helical perturbation to the jet is very small or nonexistent inside knot A; (3) that the knots in the real jet cannot be associated with the twisted filamentary features and are unlikely to be the result of a KH instability. The existence of the knots in the real jet, the limb brightening of the real jet in the radio, and the slower decline of the surface brightness of the real jet indicate that additional processes --- such as unsteady jet flow and internal particle acceleration --- are occurring within the jet. Disruption of the real jet beyond knot A by KH instability is consistent with the jet and cocoon conditions we find at knot A.
330 - Xue Ge 2019
For the sample from Ge et al. of 87 low-$z$ Palomar--Green (PG) quasi-stellar objects (QSOs) and 130 high-$z$ QSOs ($0<z<5$) with $hb$-based single-epoch supermassive black hole (SMBH) masses, we performed a uniform decomposition of the civ $lambda$1 549 broad-line profile. Based on the rest frame defined by the oiii $lambda$5007 narrow emission line, a medium-strong positive correlation is found between the civ blueshift and the luminosity at 5100AA or the Eddington ratio leddR. A medium-strong negative relationship is found between the civ blueshift and civ equivalent width. These results support the postulation where the radiation pressure may be the driver of civ blueshift. There is a medium strong correlation between the mass ratio of civ-based to $hb$-based mbh and the civ blueshift, which indicates that the bias for civ-based mbh is affected by the civ profile.
We present the discovery of diffuse optical line emission in the Centaurus cluster seen with the MUSE IFU. The unparalleled sensitivity of MUSE allows us to detect the faint emission from these structures which extend well beyond the bounds of the pr eviously known filaments. Diffuse structures (emission surrounding the filaments, a northern shell and an extended Halo) are detected in many lines typical of the nebulae in cluster cores ([NII]$_{lambda 6548&6583}$ ,[SII]$_{lambda 6716&6731}$, [OI]$_{lambda 6300}$, [OIII]$_{lambda 4959&5007}$ etc.) but are more than an order of magnitude fainter than the filaments, with the faint halo only detected through the brightest line in the spectrum ([NII]$_{lambda 6583}$). These structures are shown to be kinematically distinct from the stars in the central galaxy and have different physical and excitation states to the filaments. Possible origins are discussed for each structure in turn and we conclude that shocks and/or pressure imbalances are resulting in gas dispersed throughout the cluster core, formed from either disrupted filaments or direct cooling, which is not confined to the bright filaments.
We report the first statistical detection of X-ray emission from cosmic web filaments in ROSAT data. We selected 15,165 filaments at 0.2<z<0.6 ranging from 30 Mpc to 100 Mpc in length, identified in the Sloan Digital Sky Survey (SDSS) survey. We stac ked the X-ray count-rate maps from ROSAT around the filaments, excluding resolved galaxy groups and clusters above the mass of ~3 * 10^13 Msun as well as the detected X-ray point sources from the ROSAT, Chandra, and XMM-Newton observations. The stacked signal results in the detection of the X-ray emission from the cosmic filaments at a significance of 4.2 sigma in the energy band of 0.56-1.21 keV. The signal is interpreted, assuming the Astrophysical Plasma Emission Code (APEC) model, as an emission from the hot gas in the filament-core regions with an average gas temperature of 0.9(+1.0-0.6) keV and a gas overdensity of ~30 at the center of the filaments. Furthermore, we show that stacking the SRG/eROSITA data for ~2,000 filaments only would lead to a ~5 sigma detection of their X-ray signal, even with an average gas temperature as low as ~0.3 keV.
In the restframe UV, two of the parameters that best characterize the range of emission-line properties in quasar broad emission-line regions are the equivalent width and the blueshift of the CIV line relative to the quasar rest frame. We explore the connection between these emission-line properties and the UV through X-ray spectral energy distribution (SED) for radio-quiet (RQ) quasars. Our sample consists of a heterogeneous compilation of 406 quasars from the Sloan Digital Sky Survey and Palomar-Green survey that have well-measured CIV emission-line and X-ray properties (including 164 objects with measured Gamma). We find that RQ quasars with both strong CIV emission and small CIV blueshifts can be classified as hard-spectrum sources that are (relatively) strong in the X-ray as compared to the UV. On the other hand, RQ quasars with both weak CIV emission and large CIV blueshifts are instead soft-spectrum sources that are (relatively) weak in the X-ray as compared to the UV. This work helps to further bridge optical/soft X-ray Eigenvector 1 relationships to the UV and hard X-ray. Based on these findings, we argue that future work should consider systematic errors in bolometric corrections (and thus accretion rates) that are derived from a single mean SED. Detailed analysis of the CIV emission line may allow for SED-dependent corrections to these quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا