ترغب بنشر مسار تعليمي؟ اضغط هنا

The Blueshift Of Civ Broad Emission Line In Qsos

331   0   0.0 ( 0 )
 نشر من قبل Weihao Bian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xue Ge




اسأل ChatGPT حول البحث

For the sample from Ge et al. of 87 low-$z$ Palomar--Green (PG) quasi-stellar objects (QSOs) and 130 high-$z$ QSOs ($0<z<5$) with $hb$-based single-epoch supermassive black hole (SMBH) masses, we performed a uniform decomposition of the civ $lambda$1549 broad-line profile. Based on the rest frame defined by the oiii $lambda$5007 narrow emission line, a medium-strong positive correlation is found between the civ blueshift and the luminosity at 5100AA or the Eddington ratio leddR. A medium-strong negative relationship is found between the civ blueshift and civ equivalent width. These results support the postulation where the radiation pressure may be the driver of civ blueshift. There is a medium strong correlation between the mass ratio of civ-based to $hb$-based mbh and the civ blueshift, which indicates that the bias for civ-based mbh is affected by the civ profile.

قيم البحث

اقرأ أيضاً

We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Proje ct, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.
65 - A. B. Rivera 2020
We use multi-epoch quasar spectroscopy to determine how accurately single-epoch spectroscopy can locate quasars in emission-line parameter space in order to inform investigations where time-resolved spectroscopy is not available. We explore the impro vements in emission-line characterization that result from using non-parametric information from many lines as opposed to a small number of parameters for a single line, utilizing reconstructions based on an independent component analysis applied to the data from the Sloan Digital Sky Survey Reverberation Mapping project. We find that most of the quasars are well described by just two components, while more components signal a quasar likely to yield a successful reverberation mapping analysis. In single-epoch spectroscopy the apparent variability of equivalent width is exaggerated because it is dependent on the continuum. Multi-epoch spectroscopy reveals that single-epoch results do not significantly change where quasars are located in CIV parameter space and do not have a significant impact on investigations of the global Baldwin Effect. Quasars with emission line properties indicative of higher $L/L_{Edd}$ are less variable, consistent with models with enhanced accretion disk density. Narrow absorption features at the systemic redshift may be indicative of orientation (including radio-quiet quasars) and may appear in as much as 20% of the quasar sample. Future work applying these techniques to lower luminosity quasars will be important for understanding the nature of accretion disk winds.
Results of a long-term monitoring ($gtrsim 10$ years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the H$alpha$ and H$beta$ profile variations during the mon itoring period and study different details (as bumps, absorption bands) which can indicate structural changes in the Broad Line Region (BLR). The BLR dimensions are estimated using the time lags between the continuum and the broad lines flux variations. We find that in the case of 3C 390.3 and NGC 5548 a disk geometry can explain both the broad line profiles and their flux variations, while the BLR of NGC 4151 seems more complex and is probably composed of two or three kinematically different regions.
Broad Absorption Line Quasars (BAL QSOs) have been found to be associated with extremely compact radio sources. These reduced dimensions can be either due to projection effects or these objects might actually be intrinsically small. Exploring these t wo hypotheses is important to understand the nature and origin of the BAL phenomenon because orientation effects are an important discriminant between the different models proposed to explain this phenomenon. In this work we present VLBA observations of 5 BAL QSOs and discuss their pc-scale morphology.
We present CIV BLR modeling results for the multiply imaged $z=2.805$ quasar SDSS J2222+2745. Using data covering a 5.3 year baseline after accounting for gravitational time delays, we find models that can reproduce the observed emission-line spectra and integrated CIV fluctuations. The models suggest a thick disk BLR that is inclined by $sim$40 degrees to the observers line of sight and with a emissivity weighted median radius of $r_{rm median} = 33.0^{+2.4}_{-2.1}$ light days. The kinematics are dominated by near-circular Keplerian motion with the remainder inflowing. The rest-frame lag one would measure from the models is $tau_{rm median} = 36.4^{+1.8}_{-1.8}$ days, which is consistent with measurements based on cross-correlation. We show a possible geometry and transfer function based on the model fits and find that the model-produced velocity-resolved lags are consistent with those from cross-correlation. We measure a black hole mass of $log_{10}(M_{rm BH}/M_odot) = 8.31^{+0.07}_{-0.06}$, which requires a scale factor of $log_{10}(f_{{rm mean},sigma}) = 0.20^{+0.09}_{-0.07}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا