ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter Estimation from Improved Measurements of the CMB from QUaD

472   0   0.0 ( 0 )
 نشر من قبل Sujata Gupta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the contribution of cosmic microwave background (CMB) polarization spectra to cosmological parameter constraints. We produce cosmological parameters using high-quality CMB polarization data from the ground-based QUaD experiment and demonstrate for the majority of parameters that there is significant improvement on the constraints obtained from satellite CMB polarization data. We split a multi-experiment CMB dataset into temperature and polarization subsets and show that the best-fit confidence regions for the LCDM 6-parameter cosmological model are consistent with each other, and that polarization data reduces the confidence regions on all parameters. We provide the best limits on parameters from QUaD EE/BB polarization data and we find best-fit parameters from the multi-experiment CMB dataset using the optimal pivot scale of k_p=0.013 Mpc-1 to be {omch2, ombh2, H_0, A_s, n_s, tau}= {0.113, 0.0224, 70.6, 2.29 times 10^-9, 0.960, 0.086}.



قيم البحث

اقرأ أيضاً

We present an improved analysis of the final dataset from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our CMB power spectrum measurements by ~30 % versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests and by way of the agreement we find between our two fully independent analysis pipelines. For the standard 6-parameter LCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the ACBAR experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to < 1.5 x 10^{-43} GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be < 0.57 micro-K^2 (95% c.l.).
In this paper we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard 6-parameter LCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard 6-parameter LCDM analysis we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data shows some tension with LCDM. The origin of this 1 to 2 sigma tension remains unclear, and may point to new physics, residual systematics or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS Luminous Red Galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, alpha(cdmi)<0.11 (95 % CL), neutrino density, alpha(ndi)<0.26 (95 % CL), and neutrino velocity, alpha(nvi)<0.23 (95 % CL), modes. Our analysis sets a benchmark for future polarization experiments.
The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement ou tcomes. We then describe the structure of the corresponding particle quantum filters for estimating constant parameter and we prove their stability. In the continuous-time (diffusive) case, we propose a new formulation of these particle quantum filters. The interest of this new formulation is first to prove stability, and also to provide an efficient algorithm preserving, for any discretization step-size, positivity of the quantum states and parameter classical probabilities. This algorithm is tested on experimental data to estimate the detection efficiency for a superconducting qubit whose fluorescence field is measured using a heterodyne detector.
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the detection of a series of $approx 5 - 10$ voids along a line of sight within a square-degree patch of the sky, we found that they can be used to break the degeneracy direction of some of the cosmological parameter constraints (for example $omega_b$ and $Omega_Lambda$) in comparison with the constraints from random CMB skies with the same size area for a survey with extensive integration time. This analysis is based on our current knowledge of the average void profile and analytical estimates of the void number function. We also provide combined cosmological parameter constraints between a sky patch where series of voids are detected and a patch without voids (a randomly selected patch). The full potential of this technique relies on an accurate determination of the void profile to $approx 10$% level. For a small-area CMB observation with extensive integration time and a high signal-to-noise ratio, CMB lensing with such series of voids will provide a complementary route to cosmological parameter constraints to the CMB observations. Example of parameter constraints with a series of five voids on a $1.0^{circ} times 1.0^{circ}$ patch of the sky are $100omega_b = 2.20 pm 0.27$, $omega_c = 0.120 pm 0.022$, $Omega_Lambda = 0.682 pm 0.078$, $Delta_{mathcal{R}}^2 = left(2.22 pm 7.79right) times 10^{-9}$, $n_s = 0.962 pm 0.097$ and $tau = 0.925 pm 1.747$ at 68% C.L.
This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا