ﻻ يوجد ملخص باللغة العربية
We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished.
Power-law singularities and critical exponents in n-vector models are considered from different theoretical points of view. It includes a theoretical approach called the GFD (grouping of Feynman diagrams) theory, as well as the perturbative renormali
We consider a general stochastic branching process, which is relevant to earthquakes as well as to many other systems, and we study the distributions of the total number of offsprings (direct and indirect aftershocks in seismicity) and of the total n
We discuss shortest-path lengths $ell(r)$ on periodic rings of size L supplemented with an average of pL randomly located long-range links whose lengths are distributed according to $P_l sim l^{-xpn}$. Using rescaling arguments and numerical simulati
A proof of the relativistic $H$-theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined
We present exact results for the classical version of the Out-of-Time-Order Commutator (OTOC) for a family of power-law models consisting of $N$ particles in one dimension and confined by an external harmonic potential. These particles are interactin