ترغب بنشر مسار تعليمي؟ اضغط هنا

Shortest paths on systems with power-law distributed long-range connections

128   0   0.0 ( 0 )
 نشر من قبل Cristian F. Moukarzel
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss shortest-path lengths $ell(r)$ on periodic rings of size L supplemented with an average of pL randomly located long-range links whose lengths are distributed according to $P_l sim l^{-xpn}$. Using rescaling arguments and numerical simulation on systems of up to $10^7$ sites, we show that a characteristic length $xi$ exists such that $ell(r) sim r$ for $r<xi$ but $ell(r) sim r^{theta_s(xpn)}$ for $r>>xi$. For small p we find that the shortest-path length satisfies the scaling relation $ell(r,xpn,p)/xi = f(xpn,r/xi)$. Three regions with different asymptotic behaviors are found, respectively: a) $xpn>2$ where $theta_s=1$, b) $1<xpn<2$ where $0<theta_s(xpn)<1/2$ and, c) $xpn<1$ where $ell(r)$ behaves logarithmically, i.e. $theta_s=0$. The characteristic length $xi$ is of the form $xi sim p^{- u}$ with $ u=1/(2-xpn)$ in region b), but depends on L as well in region c). A directed model of shortest-paths is solved and compared with numerical results.



قيم البحث

اقرأ أيضاً

139 - R.T. Scalettar 2004
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z $ randomly chosen neighbors. For $z=2$ the model reduces to the $d=1$ Ising model. For $z= infty$ we get a mean field model. We find that for finite $z > 2$ the system has a second order phase transition characterized by a length scale $L={rm ln}V$ and mean field critical exponents that are independent of $z$.
We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability $p$. Such path sums $J$ have been used to model interference effects by hopping electrons in the strongly localized re gime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments $<J^n>$ always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($nto 0$) to obtain $<ln J>$ for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic structures that propagate as a function of $p$. Finally, we derive the exact probability distribution for path sums $J$ up to length L=64 for all sign probabilities.
We prove the existence of non-equilibrium phases of matter in the prethermal regime of periodically-driven, long-range interacting systems, with power-law exponent $alpha > d$, where $d$ is the dimensionality of the system. In this context, we predic t the existence of a disorder-free, prethermal discrete time crystal in one dimension -- a phase strictly forbidden in the absence of long-range interactions. Finally, using a combination of analytic and numerical methods, we highlight key experimentally observable differences between such a prethermal time crystal and its many-body localized counterpart.
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for $alpha <2$ long range orientational order of stripes can exist in two dimensions, and establish the universality class of the models. When $alpha geq 2$ no long-range order is possible, but a phase transition in the KT universality class is still present. These two different critical scenarios should be observed in experimentally relevant two dimensional systems like electronic liquids ($alpha=1$) and dipolar magnetic films ($alpha=3$). Results from Langevin simulations of Coulomb and dipolar systems give support to the theoretical results.
We investigate the nonequilibrium phase transition in the disordered contact process in the presence of long-range spatial disorder correlations. These correlations greatly increase the probability for finding rare regions that are locally in the act ive phase while the bulk system is still in the inactive phase. Specifically, if the correlations decay as a power of the distance, the rare region probability is a stretched exponential of the rare region size rather than a simple exponential as is the case for uncorrelated disorder. As a result, the Griffiths singularities are enhanced and take a non-power-law form. The critical point itself is of infinite-randomness type but with critical exponent values that differ from the uncorrelated case. We report large-scale Monte-Carlo simulations that verify and illustrate our theory. We also discuss generalizations to higher dimensions and applications to other systems such as the random transverse-field Ising model, itinerant magnets and the superconductor-metal transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا