ترغب بنشر مسار تعليمي؟ اضغط هنا

A theory of intelligence: networked problem solving in animal societies

130   0   0.0 ( 0 )
 نشر من قبل Robert Shour
 تاريخ النشر 2009
والبحث باللغة English
 تأليف Robert Shour




اسأل ChatGPT حول البحث

A societys single emergent, increasing intelligence arises partly from the thermodynamic advantages of networking the innate intelligence of different individuals, and partly from the accumulation of solved problems. Economic growth is proportional to the square of the network entropy of a societys population times the network entropy of the number of the societys solved problems.



قيم البحث

اقرأ أيضاً

This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
The Susceptible-Infected-Susceptible model is a canonical model for emerging disease outbreaks. Such outbreaks are naturally modeled as taking place on networks. A theoretical challenge in network epidemiology is the dynamic correlations coming from that if one node is occupied, or infected (for disease spreading models), then its neighbors are likely to be occupied. By combining two theoretical approaches---the heterogeneous mean-field theory and the effective degree method---we are able to include these correlations in an analytical solution of the SIS model. We derive accurate expressions for the average prevalence (fraction of infected) and epidemic threshold. We also discuss how to generalize the approach to a larger class of stochastic population models.
Many social and biological systems are characterized by enduring hierarchies, including those organized around prestige in academia, dominance in animal groups, and desirability in online dating. Despite their ubiquity, the general mechanisms that ex plain the creation and endurance of such hierarchies are not well understood. We introduce a generative model for the dynamics of hierarchies using time-varying networks in which new links are formed based on the preferences of nodes in the current network and old links are forgotten over time. The model produces a range of hierarchical structures, ranging from egalitarianism to bistable hierarchies, and we derive critical points that separate these regimes in the limit of long system memory. Importantly, our model supports statistical inference, allowing for a principled comparison of generative mechanisms using data. We apply the model to study hierarchical structures in empirical data on hiring patterns among mathematicians, dominance relations among parakeets, and friendships among members of a fraternity, observing several persistent patterns as well as interpretable differences in the generative mechanisms favored by each. Our work contributes to the growing literature on statistically grounded models of time-varying networks.
The workflow satisfiability problem (WSP) is a well-studied problem in access control seeking allocation of authorised users to every step of the workflow, subject to workflow specification constraints. It was noticed that the number $k$ of steps is typically small compared to the number of users in the real-world instances of WSP; therefore $k$ is considered as the parameter in WSP parametrised complexity research. While WSP in general was shown to be W[1]-hard, WSP restricted to a special case of user-independent (UI) constraints is fixed-parameter tractable (FPT). However, restriction to the UI constraints might be impractical. To efficiently handle non-UI constraints, we introduce the notion of branching factor of a constraint. As long as the branching factors of the constraints are relatively small and the number of non-UI constraints is reasonable, WSP can be solved in FPT time. Extending the results from Karapetyan et al. (2019), we demonstrate that general-purpose solvers are capable of achieving FPT-like performance on WSP with arbitrary constraints when used with appropriate formulations. This enables one to tackle most of practical WSP instances. While important on its own, we hope that this result will also motivate researchers to look for FPT-aware formulations of other FPT problems.
55 - Claudius Gros 2020
Envy, the inclination to compare rewards, can be expected to unfold when inequalities in terms of payoff differences are generated in competitive societies. It is shown that increasing levels of envy lead inevitably to a self-induced separation into a lower and an upper class. Class stratification is Nash stable and strict, with members of the same class receiving identical rewards. Upper class agents play exclusively pure strategies, all lower class agents the same mixed strategy. The fraction of upper class agents decreases progressively with larger levels of envy, until a single upper class agent is left. Numerical simulations and a complete analytic treatment of a basic reference model, the shopping trouble model, are presented. The properties of the class-stratified society are universal and only indirectly controllable through the underlying utility function, which implies that class stratified societies are intrinsically resistant to political control. Implications for human societies are discussed. It is pointed out that the repercussions of envy are amplified when societies become increasingly competitive.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا