ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Metric Stochastic Approximation Theory

33   0   0.0 ( 0 )
 نشر من قبل Peter Sunehag
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a variable metric stochastic approximation theory. In doing so, we provide a convergence theory for a large class of online variable metric methods including the recently introduced onli

قيم البحث

اقرأ أيضاً

For a known weak signal in additive white noise, the asymptotic performance of a locally optimum processor (LOP) is shown to be given by the Fisher information (FI) of a standardized even probability density function (PDF) of noise in three cases: (i ) the maximum signal-to-noise ratio (SNR) gain for a periodic signal; (ii) the optimal asymptotic relative efficiency (ARE) for signal detection; (iii) the best cross-correlation gain (CG) for signal transmission. The minimal FI is unity, corresponding to a Gaussian PDF, whereas the FI is certainly larger than unity for any non-Gaussian PDFs. In the sense of a realizable LOP, it is found that the dichotomous noise PDF possesses an infinite FI for known weak signals perfectly processed by the corresponding LOP. The significance of FI lies in that it provides a upper bound for the performance of locally optimum processing.
Approaches for mapping time series to networks have become essential tools for dealing with the increasing challenges of characterizing data from complex systems. Among the different algorithms, the recently proposed ordinal networks stand out due to its simplicity and computational efficiency. However, applications of ordinal networks have been mainly focused on time series arising from nonlinear dynamical systems, while basic properties of ordinal networks related to simple stochastic processes remain poorly understood. Here, we investigate several properties of ordinal networks emerging from random time series, noisy periodic signals, fractional Brownian motion, and earthquake magnitude series. For ordinal networks of random series, we present an approach for building the exact form of the adjacency matrix, which in turn is useful for detecting non-random behavior in time series and the existence of missing transitions among ordinal patterns. We find that the average value of a local entropy, estimated from transition probabilities among neighboring nodes of ordinal networks, is more robust against noise addition than the standard permutation entropy. We show that ordinal networks can be used for estimating the Hurst exponent of time series with accuracy comparable with state-of-the-art methods. Finally, we argue that ordinal networks can detect sudden changes in Earth seismic activity caused by large earthquakes.
33 - Erik M. Bollt 2018
A basic systems question concerns the concept of closure, meaning autonomomy (closed) in the sense of describing the (sub)system as fully consistent within itself. Alternatively, the system may be nonautonomous (open) meaning it receives influence fr om an outside coupling subsystem. Information flow, and related causation inference, are tenant on this simple concept. We take the perspective of Weiner-Granger causality, descriptive of a subsystem forecast quality dependence on considering states of another subsystem. Here we develop a new direct analytic discussion, rather than a data oriented approach. That is, we refer to the underlying Frobenius-Perron transfer operator that moderates evolution of densities of ensembles of orbits, and two alternative forms of the restricted Frobenius-Perron (FP) operator, interpreted as if either closed (determinstic FP) or not closed (the unaccounted outside influence seems stochastic and correspondingly the stochastic FP operator). From this follows contrasting the kernels of the variants of the operators, as if densities in their own rights. However, the corresponding differential entropy to compare by Kulback-Leibler divergence, as one would when leading to transfer entropy, becomes ill-defined. Instead we build our Forecastability Quality Metric (FQM) upon the symmetrized variant known as Jensen-Shanon divergence, and also we are able to point out several useful resulting properties that result. We illustrate the FQM by a simple coupled chaotic system. For now, this analysis is a new theoretical direction, but we describe data oriented directions for the future.
As a classical state, for instance a digitized image, is transferred through a classical channel, it decays inevitably with the distance due to the surroundings interferences. However, if there are enough number of repeaters, which can both check and recover the states information continuously, the states decay rate will be significantly suppressed, then a classical Zeno effect might occur. Such a physical process is purely classical and without any interferences of living beings, therefore, it manifests that the Zeno effect is no longer a patent of quantum mechanics, but does exist in classical stochastic processes.
This paper presents a direct method to obtain the deterministic and stochastic contribution of the sum of two independent sets of stochastic processes, one of which is composed by Ornstein-Uhlenbeck processes and the other being a general (non-linear ) Langevin process. The method is able to distinguish between all stochastic process, retrieving their corresponding stochastic evolution equations. This framework is based on a recent approach for the analysis of multidimensional Langevin-type stochastic processes in the presence of strong measurement (or observational) noise, which is here extended to impose neither constraints nor parameters and extract all coefficients directly from the empirical data sets. Using synthetic data, it is shown that the method yields satisfactory results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا