ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing stochastic time series with ordinal networks

63   0   0.0 ( 0 )
 نشر من قبل Haroldo Ribeiro
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Approaches for mapping time series to networks have become essential tools for dealing with the increasing challenges of characterizing data from complex systems. Among the different algorithms, the recently proposed ordinal networks stand out due to its simplicity and computational efficiency. However, applications of ordinal networks have been mainly focused on time series arising from nonlinear dynamical systems, while basic properties of ordinal networks related to simple stochastic processes remain poorly understood. Here, we investigate several properties of ordinal networks emerging from random time series, noisy periodic signals, fractional Brownian motion, and earthquake magnitude series. For ordinal networks of random series, we present an approach for building the exact form of the adjacency matrix, which in turn is useful for detecting non-random behavior in time series and the existence of missing transitions among ordinal patterns. We find that the average value of a local entropy, estimated from transition probabilities among neighboring nodes of ordinal networks, is more robust against noise addition than the standard permutation entropy. We show that ordinal networks can be used for estimating the Hurst exponent of time series with accuracy comparable with state-of-the-art methods. Finally, we argue that ordinal networks can detect sudden changes in Earth seismic activity caused by large earthquakes.


قيم البحث

اقرأ أيضاً

Extracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-dimensional systems is a challenge of complex systems research. Open questions are how to differentiate chaotic signals from stochastic ones, and how to quantify nonlinear and/or high-order temporal correlations. Here we propose a new technique to reliably address both problems. Our approach follows two steps: first, we train an artificial neural network (ANN) with flicker (colored) noise to predict the value of the parameter, $alpha$, that determines the strength of the correlation of the noise. To predict $alpha$ the ANN input features are a set of probabilities that are extracted from the time series by using symbolic ordinal analysis. Then, we input to the trained ANN the probabilities extracted from the time series of interest, and analyze the ANN output. We find that the $alpha$ value returned by the ANN is informative of the temporal correlations present in the time series. To distinguish between stochastic and chaotic signals, we exploit the fact that the difference between the permutation entropy (PE) of a given time series and the PE of flicker noise with the same $alpha$ parameter is small when the time series is stochastic, but it is large when the time series is chaotic. We validate our technique by analysing synthetic and empirical time series whose nature is well established. We also demonstrate the robustness of our approach with respect to the length of the time series and to the level of noise. We expect that our algorithm, which is freely available, will be very useful to the community.
375 - Jan W. Kantelhardt 2008
Data series generated by complex systems exhibit fluctuations on many time scales and/or broad distributions of the values. In both equilibrium and non-equilibrium situations, the natural fluctuations are often found to follow a scaling relation over several orders of magnitude, allowing for a characterisation of the data and the generating complex system by fractal (or multifractal) scaling exponents. In addition, fractal and multifractal approaches can be used for modelling time series and deriving predictions regarding extreme events. This review article describes and exemplifies several methods originating from Statistical Physics and Applied Mathematics, which have been used for fractal and multifractal time series analysis.
The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording, and analyzing the dynamics of different processes, an extensi ve organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series and over 9000 time-series analysis algorithms are analyzed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines, and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heart beat intervals, speech signals, and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.
The method of surrogates is one of the key concepts of nonlinear data analysis. Here, we demonstrate that commonly used algorithms for generating surrogates often fail to generate truly linear time series. Rather, they create surrogate realizations w ith Fourier phase correlations leading to non-detections of nonlinearities. We argue that reliable surrogates can only be generated, if one tests separately for static and dynamic nonlinearities.
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by us ing Student distributions instead of power law-truncated Levy distributions; we also show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا