ترغب بنشر مسار تعليمي؟ اضغط هنا

The two-type continuum Richardson model: Non-dependence of the survival of both types on the initial configuration

87   0   0.0 ( 0 )
 نشر من قبل Thomas Richthammer
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the model of Deijfen et al. for competing growth of two infection types in R^d, based on the Richardson model on Z^d. Stochastic ball-shaped infection outbursts transmit the infection type of the center to all points of the ball that are not yet infected. Relevant parameters of the model are the initial infection configuration, the (type-dependent) growth rates and the radius distribution of the infection outbursts. The main question is that of coexistence: Which values of the parameters allow the unbounded growth of both types with positive probability? Deijfen et al. conjectured that the initial configuration basically is irrelevant for this question, and gave a proof for this under strong assumptions on the radius distribution, which e.g. do not include the case of a deterministic radius. Here we give a proof that doesnt rely on these assumptions. One of the tools to be used is a slight generalization of the model with immune regions and delayed initial infection configurations.

قيم البحث

اقرأ أيضاً

The two-type Richardson model describes the growth of two competing infections on $mathbb{Z}^d$ and the main question is whether both infection types can simultaneously grow to occupy infinite parts of $mathbb{Z}^d$. For bounded initial configuration s, this has been thoroughly studied. In this paper, an unbounded initial configuration consisting of points $x=(x_1,...,x_d)$ in the hyperplane $mathcal{H}={xinmathbb{Z}^d:x_1=0}$ is considered. It is shown that, starting from a configuration where all points in $mathcal{H} {mathbf{0}}$ are type 1 infected and the origin $mathbf{0}$ is type 2 infected, there is a positive probability for the type 2 infection to grow unboundedly if and only if it has a strictly larger intensity than the type 1 infection. If, instead, the initial type 1 infection is restricted to the negative $x_1$-axis, it is shown that the type 2 infection at the origin can also grow unboundedly when the infection types have the same intensity.
The two-type Richardson model describes the growth of two competing infection types on the two or higher dimensional integer lattice. For types that spread with the same intensity, it is known that there is a positive probability for infinite coexist ence, while for types with different intensities, it is conjectured that infinite coexistence is not possible. In this paper we study the two-type Richardson model in the upper half-plane $mathbb{Z}timesmathbb{Z}_+$, and prove that coexistence of two types starting on the horizontal axis has positive probability if and only if the types have the same intensity.
We consider first passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly at random, a sender and a recipient, and all edges along the geodesic connecting the two vertices are coloured in red (in the case that both vertices are in the same component). In this article we prove local limit theorems for the coloured graph around the recipient in the spirit of Benjamini and Schramm. We consider the explosive regime, in which case the random distances are of finite order, and the Malthusian regime, in which case the random distances are of logarithmic order.
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each sit e sampled independently from a certain distribution, and then one particle is activated to begin the process. We show that the recurrence or transience of the model is sensitive not just to the expectation but to the entire distribution. This is in contrast to closely related models like branching random walk and activated random walk.
In this paper, we study the annealed ferromagnetic Ising model on the configuration model. In an annealed system, we take the average on both sides of the ratio {defining the Boltzmann-Gibbs measure of the Ising model}. In the configuration model, th e degrees are specified. Remarkably, when the degrees are deterministic, the critical value of the annealed Ising model is the same as that for the quenched Ising model. For independent and identically distributed (i.i.d.) degrees, instead, the annealed critical value is strictly smaller than that of the quenched Ising model. This identifies the degree structure of the underlying graph as the main driver for the critical value. Furthermore, in both contexts (deterministic or random degrees), we provide the variational expression for the annealed pressure. Interestingly, our rigorous results establish that only part of the heuristic conjectures in the physics literature were correct.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا