ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover between localized states and pinned Wigner crystal in high-mobility n-GaAs/AlGaAs heterostructures near filling factor $ u=1$

363   0   0.0 ( 0 )
 نشر من قبل Ivan Smirnov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured magnetic field dependences of the attenuation and velocity of surface acoustic waves in a high-mobility $n$-GaAs/AlGaAs structure with a wide quantum well. The results allowed us to find the complex conductance, $sigma(omega)$, of the heterostructure for different frequencies, temperatures and magnetic fields near filling factors $ u=1, 2$. Observed behavior of $sigma(omega)$ versus magnetic field outside close vicinities of integer fillings reveals an oscillation pattern indicative of the rich fractional quantum Hall effect. Our result is that in very close vicinities of integer filling factors the AC response of a high-mobility two-dimensional structures behaves as that of a two-dimensional system of localized electrons. Namely, both real and imaginary parts of the complex AC conductance at low temperatures agree with the predictions for the two-site model for a two-dimensional hopping system. Another result is the specific temperature dependences of $sigma(omega)$, which are extremely sensitive to the filling factor value. These dependences indicate a sharp crossover between the localized modes and a pinned Wigner crystal.

قيم البحث

اقرأ أيضاً

Using acoustic methods the complex high-frequency conductance of high-mobility $n$-GaAs/AlGaAs heterostructures was determined in magnetic fields 12$div$18~T. Based on the observed frequency and temperature dependences we conclude that in the investi gated magnetic field range and at sufficiently low temperatures, $T lesssim 200$~mK, the electron system forms a Wigner crystal deformed due to pinning by disorder. At some temperature, which depends on the electron filling factor, the temperature dependences of both components of the complex conductance get substantially changed. We have ascribed this rapid change of the conduction mechanism to melting of the Wigner crystal and study the dependence of the so-defined melting temperature on the electron filling factor.
Thermal measurements on a GaAs/AlGaAs heterostructure reveal that the state of the confined two-dimensional electrons dramatically affects the nuclear-spin diffusion near Landau level filling factor u=1. The experiments provide quantitative evidence that the sharp peak in the temperature dependence of heat capacity near u=1 is due to an enhanced nuclear-spin diffusion from the GaAs quantum wells into the AlGaAs barriers. We discuss the physical origin of this enhancement in terms the possible Skyrme solid-liquid phase transition.
Microwave pinning-mode resonances found around integer quantum Hall effects, are a signature of crystallized quasiparticles or holes. Application of in-plane magnetic field to these crystals, increasing the Zeeman energy, has negligible effect on the resonances just below Landau level filling $ u=2$, but increases the pinning frequencies near $ u=1$, particularly for smaller quasiparticle/hole densities. The charge dynamics near $ u=1$, characteristic of a crystal order, are affected by spin, in a manner consistent with a Skyrme crystal.
Microwave spectroscopy within the Landau filling ($ u$) range of the integer quantum Hall effect (IQHE) has revealed pinning mode resonances signifying Wigner solids (WSs) composed of quasi-particles or -holes. We study pinning modes of WSs in wide q uantum wells (WQWs) for $ 0.8le ule1.2$, varying the density, $n$, and tilting the sample by angle $theta$ in the magnetic field. Three distinct WS phases are accessed. One phase, S1, is phenomenologically the same as the WS observed in the IQHEs of narrow QWs. The second phase, S2, exists at $ u$ further from $ u=1$ than S1, and requires a sufficiently large $n$ or $theta$, implying S2 is stabilized by the Zeeman energy. The melting temperatures of S1 and S2, estimated from the disappearance of the pinning mode, show different behavior vs $ u$. At the largest $n$ or $theta$, S2 disappears and the third phase, S1A, replaces S1, also exhibiting a pinning mode. This occurs as the WQW $ u=1$ IQHE becomes a two-component, Halperin-Laughlin $pone$ state. We interpret S1A as a WS of the excitations of $pone$, which has not been previously observed.
By simultaneous measurements of the attenuation and velocity of surface acoustic waves propagating in proximity to a high-quality GaAs quantum well we study the complex AC conductance of the two-dimensional electron system. Focusing on the vicinity o f the filling factor $ u=1/5$ we confirm that the insulating states formed closely to this value of $ u$ are pinned Wigner crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا