ﻻ يوجد ملخص باللغة العربية
We calculate the relic density of the lightest neutralino in a supersymmetric seesaw type-II (``triplet seesaw) model with minimal supergravity boundary conditions at the GUT scale. The presence of a triplet below the GUT scale, required to explain measured neutrino data in this setup, leads to a characteristic deformation of the sparticle spectrum with respect to the pure mSugra expectations, affecting the calculated relic dark matter (DM) density. We discuss how the DM allowed regions in the (m_0,M_{1/2}) plane change as a function of the (type-II) seesaw scale. We also compare the constraints imposed on the models parameter space form upper limits on lepton flavour violating (LFV) decays to those imposed by DM. Finally, we briefly comment on uncertainties in the calculation of the relic neutralino density due to uncertainties in the measured top and bottom masses.
In the framework of type II seesaw mechanism we discuss the number of sterile right-handed Majorana neutrinos being the warm dark matter (WDM). When the type II seesaw mass term $M_ u ^{II}$ is far less than the type I seesaw mass term $M_ u ^{I}$, o
With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra $SU(2)$ doublet $Phi$. Moreover, we have imposed a $mathbb{Z}_2$ parity on $Phi$ which rema
In an endeavor to explain the light neutrino masses and dark matter (DM) simultaneously, we study a gauged $U(1)_{rm B-L}$ extension of the standard model (SM). The neutrino masses are generated through a variant of type-II seesaw mechanism in which
The singlet majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet $chi$ with $L=2$ and one dark complex scalar singlet $zeta$ with $L=1$. This simple setup allows $chi$ to obtain a small radiative mass anchored by the
We propose a new class of R-parity violating extension of MSSM with type II seesaw mechanism for neutrino masses where an unstable gravitino is the dark matter of the Universe. It decays predominantly into three leptons final states, thereby providin