ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron impact excitation of OII fine-structure levels

102   0   0.0 ( 0 )
 نشر من قبل Gary J. Ferland
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective collision strengths for forbidden transitions among the 5 energetically lowest finestructure levels of O II are calculated in the Breit-Pauli approximation using the R-matrix method. Results are presented for the electron temperature range 100 to 100 000 K. The accuracy of the calculations is evaluated via the use of different types of radial orbital sets and a different configuration expansion basis for the target wavefunctions. A detailed assessment of previous available data is given, and erroneous results are highlighted. Our results reconfirm the validity of the original Seaton and Osterbrock scaling for the optical O II ratio, a matter of some recent controversy. Finally we present plasma diagnostic diagrams using the best collision strengths and transition probabilities.



قيم البحث

اقرأ أيضاً

We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T(K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six lowest configurations, giving rise to 1378 individual lines, and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed UV and EUV emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by FUSE and EUVE. The present line intensities are found to agree well with the observational results and provide a noticeable improvement upon the values predicted by CHIANTI.
We present laboratory spectra of the $3p$--$3d$ transitions in Fe$^{14+}$ and Fe$^{15+}$ excited with a mono-energetic electron beam. In the energy dependent spectra obtained by sweeping the electron energy, resonant excitation is confirmed as an int ensity enhancement at specific electron energies. The experimental results are compared with theoretical cross sections calculated based on fully relativistic wave functions and the distorted-wave approximation. Comparisons between the experimental and theoretical results show good agreement for the resonance strength. A significant discrepancy is, however, found for the non-resonant cross section in Fe$^{14+}$. %, which can be considered as a fundamental cause of the line intensity ratio problem that has often been found in both observatory and laboratory measurements. This discrepancy is considered to be the fundamental cause of the previously reported inconsistency of the model with the observed intensity ratio between the $^3!P_2$ -- $^3!D_3$ and $^1!P_1$ -- $^1!D_2$ transitions.
287 - J. B. Whitmore 2014
We present a new `supercalibration technique for measuring systematic distortions in the wavelength scales of high resolution spectrographs. By comparing spectra of `solar twin stars or asteroids with a reference laboratory solar spectrum, distortion s in the standard thorium--argon calibration can be tracked with $sim$10 m s$^{-1}$ precision over the entire optical wavelength range on scales of both echelle orders ($sim$50--100 AA) and entire spectrographs arms ($sim$1000--3000 AA). Using archival spectra from the past 20 years we have probed the supercalibration history of the VLT--UVES and Keck--HIRES spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically $pm$200 m s$^{-1}$ per 1000 AA. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, $alpha$. The spurious deviations in $alpha$ produced by the model closely match important aspects of the VLT--UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in $alpha$ from quasar absorption lines.
111 - Franck Delahaye 2006
Helium-like ions provide the most important X-ray spectral diagnostics in high temperature fusion and astrophysical plasmas. We previously presented computed collision strengths for O~VII including relativistic fine structure, levels up to the $n=4$ complex and radiation damping of autoionizing resonances. We have extended this work to other He-like ions (N, Ne, Mg, Al, Si, S, Ca). The calculations are carried out using the Breit-Pauli R-matrix (BPRM) method with a 31-level eigenfunction expansion. Collision strengths for the principal lines important in X-ray plasma diagnostics, w, x, y and z, corresponding to the 4 transitions to the ground level 1s^2(^1S_0) <- 1s2p(^1P^o_1), 1s2p(^3P^o_2), 1s2p(^3P^o_1), 1s2s(^3S_1), are explicitly shown. We find the effect of radiation damping to be significant for the forbidden transitions in heavier He-like ions, which should affect the diagnostic line ratios. We extrapolated the collision strengths to their values at infinite energy using the Burgess-Tully extrapolation technique. This is required to calculate the Maxwellian average collision strengths at high temperature. We show that the coupling between dipole allowed and inter-combination transitions affects increasingly the effective collision strengths for the n ^1S_0 - n ^3P_1 transition as the charge of the ion increases. This clearly affects the treatment of the extrapolation toward the infinite energy point of the collision strength. This work is carried out as part of the Iron Project-RmaX Network.
173 - Yanting Li , Ra Si , Jinqing Li 2020
Energy levels and transition rates for electric-dipole, electric-quadrupole, electric-octupole, magnetic-dipole, and magnetic-quadrupole transitions among the levels arising from the $n leq$ 5 configurations in B-like Kr XXXII are calculated by using two state-of-the-art methods, namely, the multi-configuration Dirac-Hartree-Fock (MCDHF) approach and the second-order many-body perturbation theory (RMBPT). Our results are compared with several available experimental and other theoretical values. Electron-impact excitation (EIE) collision strengths are calculated via the independent process and isolated resonance approximation using distorted-wave (denoted by IPIRDW). Radiation damping effects on the resonance excitation contributions are included. Effective collision strengths are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Spectral line intensities are modeled by using collision radiative model, and several line pairs pointed out might be useful for density diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا