ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-Impact Excitation Collision Strengths and Theoretical Line Intensities for Fine-Structure Transitions in S III

204   0   0.0 ( 0 )
 نشر من قبل Meredith Grieve Miss
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T(K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six lowest configurations, giving rise to 1378 individual lines, and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed UV and EUV emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by FUSE and EUVE. The present line intensities are found to agree well with the observational results and provide a noticeable improvement upon the values predicted by CHIANTI.



قيم البحث

اقرأ أيضاً

Effective collision strengths for forbidden transitions among the 5 energetically lowest finestructure levels of O II are calculated in the Breit-Pauli approximation using the R-matrix method. Results are presented for the electron temperature range 100 to 100 000 K. The accuracy of the calculations is evaluated via the use of different types of radial orbital sets and a different configuration expansion basis for the target wavefunctions. A detailed assessment of previous available data is given, and erroneous results are highlighted. Our results reconfirm the validity of the original Seaton and Osterbrock scaling for the optical O II ratio, a matter of some recent controversy. Finally we present plasma diagnostic diagrams using the best collision strengths and transition probabilities.
Improved collisions strengths for the mid-infrared and optical transitions in Ne V are presented. Breit-Pauli R-Matrix calculations for electron impact excitation are carried out with fully resolved near-threshold resonances at very low energies. In particular, the fine structure lines at 14 micron and 24 micron due to transitions among the ground state levels 1s^22s^22p^3 (^3P_{0,1,2}), and the optical/near-UV lines at 2973, 3346 and 3426 Angstrom transitions among the ^3P_{0,1,2}, ^1D_2, ^1S_0 levels are described. Maxwellian averaged collision strengths are tabulated for all forbidden transistion within the ground configuration. Significant differences are found in the low temperature range Te < 10000 K for both the FIR and the opitcal transitions compared to previous results. An analysis of the 14/24 line ratio in low-energy-density (LED) plasma conditions reveals considerable variation; the effective rate coefficient may be dominated by the very low-energy behaviour rather than the maxwellian averaged collision strengths. Computed values suggest a possible solution to the anomalous mid-IR ratios found to be lower than theoretical limits observed from planetary nebulae and Seyfert galaxies. While such LED conditions may be present in infrared sources, they might be inconsistent with photoionization equilibrium models.
149 - P.J. Storey , Taha Sochi 2015
We present effective collision strengths for electron excitation and de-excitation of the ten forbidden transitions between the five lowest energy levels of the astronomically abundant doubly-ionised oxygen ion, O^{2+}. The raw collision strength dat a were obtained from an R-matrix intermediate coupling calculation using the Breit-Pauli relativistic approximation published previously by the authors. The effective collision strengths were calculated with kappa-distributed electron energies and are tabulated as a function of the electron temperature and kappa.
Far-infrared and optical [O III] lines are useful temeprature-density diagnostics of nebular as well as dust obscured astrophysical sources. Fine structure transitions among the ground state levels 1s^22s^22p^3 ^3P_{0,1,2} give rise to the 52 and 88 micron lines, whereas transitions among the $^3P_{0,1,2}, ,^1D_2, ^1S_0$ levels yield the well-known optical lines 4363, 4959 and 5007 Angstroms. These lines are excited primarily by electron impact excitation. But despite their importance in nebular diagnostics collision strengths for the associated fine structure transitions have not been computed taking full account of relativistic effects. We present Breit-Pauli R-matrix calculations for the collision strengths with highly resolved resonance structures. We find significant differences of up to 20% in the Maxwellian averaged rate coefficients from previous works. We also tabulate these to lower temperatures down to 100 K to enable determination of physical conditions in cold dusty environments such photo-dissociation regions and ultra-luminous infrared galaxies observed with the Herschel space observatory. We also examine the effect of improved collision strengths on temperature and density sensitive line ratios.
We try to understand the gas heating and cooling in the S 140 star forming region by spatially and spectrally resolving the distribution of the main cooling lines with GREAT/SOFIA. We mapped the fine structure lines of [OI] (63 {mu}m) and [CII] (158 {mu}m) and the rotational transitions of CO 13-12 and 16-15 with GREAT/SOFIA and analyzed the spatial and velocity structure to assign the emission to individual heating sources. We measure the optical depth of the [CII] line and perform radiative transfer computations for all observed transitions. By comparing the line intensities with the far-infrared continuum we can assess the total cooling budget and measure the gas heating efficiency. The main emission of fine structure lines in S 140 stems from a 8.3 region close to the infrared source IRS 2 that is not prominent at any other wavelength. It can be explained by a photon-dominated region (PDR) structure around the embedded cluster if we assume that the [OI] line intensity is reduced by a factor seven due to self-absorption. The external cloud interface forms a second PDR at an inclination of 80-85 degrees illuminated by an UV field of 60 times the standard interstellar radiation field. The main radiation source in the cloud, IRS 1, is not prominent at all in the fine structure lines. We measure line-to-continuum cooling ratios below 10^(-4), i.e. values lower than in any other Galactic source, rather matching the far-IR line deficit seen in ULIRGs. In particular the low intensity of the [CII] line can only be modeled by an extreme excitation gradient in the gas around IRS 1. We found no explanation why IRS 1 shows no associated fine-structure line peak, while IRS 2 does. The inner part of S 140 mimics the far-IR line deficit in ULIRGs thereby providing a template that may lead to a future model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا