ﻻ يوجد ملخص باللغة العربية
We develop a Landau Ginzburg theory of the hidden order phase and the local moment antiferromagnetic phase of URu_2Si_2. We unify the two broken symmetries in a common complex order parameter and derive many experimentally relevant consequences such as the topology of the phase diagram in magnetic field and pressure. The theory accounts for the appearance of a moment under application of stress and the thermal expansion anomaly across the phase transitions. It identifies the low energy mode which is seen in the hidden order phase near the conmensurate wavector (0,0, 1) as the pseudo-Goldstone mode of the approximate U(1) symmetry.
Complex electronic matter exhibit subtle forms of self organization which are almost invisible to the available experimental tools, but which have dramatic physical consequences. One prominent example is provided by the actinide based heavy fermion m
We have performed elastic neutron scattering experiments under uniaxial stress sigma applied along the tetragonal [100], [110] and [001] directions for the heavy electron compound URu2Si2. We found that antiferromagnetic (AF) order with large moment
The phase diagram of the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XXZ chain was obtained by Haldane using bosonization techniques. It supports three distinct phases for $0leq J^{,}_{2}/J^{,}_{1}<1/2$, i.e., a gapless algebraic spin
Hidden-order phase transition in the heavy-fermion superconductor URu$_2$Si$_2$ exhibits the mean-field-like anomaly in temperature dependence of heat capacity. Motivated by this observation, here we explore the impact of the complex order parameter
The complex Ginzburg-Landau equation (CGLE) is a general model of spatially extended nonequilibrium systems. In this paper, an analytical method for a variable coefficient CGLE is presented to obtain exact solutions. Variable transformations for spac