ﻻ يوجد ملخص باللغة العربية
RR Lyrae stars (RRLS) belong to population II and are generally used as a tracer of the host galaxy halo. The surface as well as vertical distribution of RRLS in the inner Large Magellanic Cloud (LMC) are studied to understand whether these stars are actually formed in the halo. RRLS identified by the OGLE III survey are used to estimate their number density distribution. The scale-height of their distribution is estimated using extinction corrected average magnitudes of ab type stars. The density distribution mimics the bar, confirming results in the literature. The distribution of their scale height indicates that there may be two populations, one with smaller scale-height, very similar to the red clump stars and the other, much larger. The distribution of the reddening-corrected magnitude along the minor axis shows variation, suggesting an inclination. The inclination is estimated to be i = 31.3 (3.5) degrees, very similar to the inclination of the disk. Thus, the RRLS in the inner LMC mimic the bar and inclination of the disk, suggesting that a major fraction of RRLS is formed in the disk of the LMC. The results indicate that the RRLS in the inner LMC trace the disk and probably the inner halo. They do not trace the extended metal-poor halo of the LMC. We suggest that a major star formation event happened in the LMC at 10-12 Gyrs ago, resulting in the formation of most of the inner RRLS, as well as probably the globular clusters, inner halo and the disk of the LMC.
For centuries extremely-long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network (DFN) is the largest single fireball network in the world, covering about one third of Aus
Thousands of RR Lyrae stars have been observed by the textit{Kepler} space telescope so far. We developed a photometric pipeline tailored to the light variations of these stars, called the Extended Aperture Photometry (EAP). We present the comparison
The recent LIGO detection of gravitational waves (GW150914), likely originating from the merger of two $sim 30 M_odot$ black holes suggests progenitor stars of low metallicity ($[Z/Z_odot] lesssim 0.3$), constraining when and where the progenitor of
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky
The textit{Kepler} space telescope observed thousands of RR Lyrae stars in the K2 mission. In this paper we present our photometric solutions using extended apertures in order to conserve the flux of the stars to the highest possible extent. With thi