ﻻ يوجد ملخص باللغة العربية
The textit{Kepler} space telescope observed thousands of RR Lyrae stars in the K2 mission. In this paper we present our photometric solutions using extended apertures in order to conserve the flux of the stars to the highest possible extent. With this method we are able to avoid most of the problems that RR Lyrae light curves produced by other pipelines suffer from. For post-processing we apply the K2SC pipeline to our light curves. We provide the EAP (Extended Aperture Photometry) of 432 RR Lyrae stars observed in campaigns 3, 4, 5, and 6. We also provide subclass classifications based on Fourier parameters. We investigated in particular the presence of the Blazhko effect in the stars, and found it to be 44.7% among the RRab stars, in agreement with results from independent samples. We found that the amplitude and phase modulation in the Blazhko stars may behave rather differently, at least over the length of a K2 Campaign. We also identified four anomalous Cepheid candidates in the sample one of which is potentially the first Blazhko-modulated member of its class.
Light curves for RR Lyrae stars can be difficult to obtain properly in the K2 mission due to the similarities between the timescales of the observed physical phenomena and the instrumental signals appearing in the data. We developed a new photometric
We present the method of the Extended Aperture Photometry (EAP) that we applied to K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field o
Thousands of RR Lyrae stars have been observed by the textit{Kepler} space telescope so far. We developed a photometric pipeline tailored to the light variations of these stars, called the Extended Aperture Photometry (EAP). We present the comparison
The study of RR Lyrae stars has recently been invigorated thanks to the long, uninterrupted, ultra-precise time series data provided by the Kepler and CoRoT space telescopes. We give a brief overview of the new observational findings concentrating on
We have obtained single-phase near-infrared (NIR) magnitudes in the J- and K-bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for