ترغب بنشر مسار تعليمي؟ اضغط هنا

The Loudest Stellar Heartbeat: Characterizing the most extreme amplitude heartbeat star system

117   0   0.0 ( 0 )
 نشر من قبل Tharindu Jayasinghe
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the extreme heartbeat star system MACHO 80.7443.1718 in the LMC using TESS photometry and spectroscopic observations from the Magellan Inamori Kyocera Echelle (MIKE) and SOAR Goodman spectographs. MACHO 80.7443.1718 was first identified as a heartbeat star system in the All-Sky Automated Survey for SuperNovae (ASAS-SN) with $P_{rm orb}=32.836pm0.008,{rm d}$. MACHO 80.7443.1718 is a young (${sim}6$~Myr), massive binary, composed of a B0 Iae supergiant with $M_1 simeq 35 M_odot$ and an O9.5V secondary with $M_2 simeq 16 M_odot$ on an eccentric ($e=0.51pm0.03$) orbit. In addition to having the largest variability amplitude amongst all known heartbeats stars, MACHO 80.7443.1718 is also one of the most massive heartbeat stars yet discovered. The B[e] supergiant has Balmer emission lines and permitted/forbidden metallic emission lines associated with a circumstellar disk. The disk rapidly dissipates at periastron which could indicate mass transfer to the secondary, but re-emerges immediately following periastron passage. MACHO 80.7443.1718 also shows tidally excited oscillations at the $N=25$ and $N=41$ orbital harmonics and has a rotational period of 4.4 d.

قيم البحث

اقرأ أيضاً

This paper summarizes the project work on asteroseismology at the ERASMUS+ GATE 2020 Summer school on space satellite data. The aim was to do a global asteroseismic analysis of KIC 5006817 and quantify its stellar properties using the high-quality, s tate of the art space missions data. We employed the aperture photometry to analyze the data from the Kepler space telescope and the Transiting Exoplanet Survey Satellite (TESS). Using the lightkurve Python package, we have derived the asteroseismic parameters and calculated the stellar parameters using the scaling relations. Our analysis of KIC 5006817 confirmed its classification as a heartbeat binary. The rich oscillation spectrum facilitate estimating power excess ($ u_{rm max}$) at 145.50$pm$0.50 $mu$Hz and large frequency separation ($Delta u$) to be 11.63$pm$0.10 $mu$Hz. Our results showed that the primary component is a low-luminosity, red-giant branch star with a mass, radius, surface gravity, and luminosity of 1.53$pm$0.07 M$_odot$, 5.91$pm$0.12 R$_odot$, 3.08$pm$0.01 dex, and 19.66$pm$0.73 L$_odot$, respectively. The orbital period of the system is 94.83$pm$0.05 d.
{iota} Ori is a well studied massive binary consisting of an O9 III + B1 III/IV star. Due to its high eccentricity (e = 0.764) and short orbital period (P orb = 29.13376 d), it has been considered to be a good candidate to show evidence of tidal effe cts; however, none have previously been identified. Using photometry from the BRITE-Constellation space photometry mission we have confirmed the existence of tidal distortions through the presence of a heartbeat signal at periastron. We combine spectroscopic and light curve analyses to measure the masses and radii of the components, revealing {iota} Ori to be the most massive heartbeat system known to date. In addition, using a thorough frequency analysis, we also report the unprecedented discovery of multiple tidally induced oscillations in an O star. The amplitudes of the pulsations allow us to empirically estimate the tidal circularization rate, yielding an effective tidal quality factor Q $approx 4 times 10^{4}$ .
Chemically peculiar stars in eclipsing binary systems are rare objects that allow the derivation of fundamental stellar parameters and important information on the evolutionary status and the origin of the observed chemical peculiarities. Here we pre sent an investigation of the known eclipsing binary system BD+09 1467 = V680 Mon. Using spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and own observations, we identify the primary component of the system as a mercury-manganese (HgMn/CP3) star (spectral type kB9 hB8 HeB9 V HgMn). Furthermore, photometric time series data from the Transiting Exoplanet Survey Satellite (TESS) indicate that the system is a heartbeat star, a rare class of eccentric binary stars with short-period orbits that exhibit a characteristic signature near the time of periastron in their light curves due to the tidal distortion of the components. Using all available photometric observations, we present an updated ephemeris and binary system parameters as derived from modelling of the system with the ELISa code, which indicates that the secondary star has an effective temperature of Teff = 8300+-200 K (spectral type of about A4). V680 Mon is only the fifth known eclipsing CP3 star and the first one in a heartbeat binary. Furthermore, our results indicate that the star is located on the zero-age main sequence and a possible member of the open cluster NGC 2264. As such, it lends itself perfectly for detailed studies and may turn out to be a keystone in the understanding of the development of CP3 star peculiarities.
346 - Zhao Guo 2020
We briefly review the current status of the study of tidally excited oscillations (TEOs) in heartbeat binary stars. Particular attention is paid to correctly extracting the TEOs when the Fourier spectrum also contains other types of pulsations and va riabilities. We then focus on the theoretical modeling of the TEO amplitudes and phases. Pulsation amplitude can be modeled by a statistical approach, and pulsation phases can help to identify the azimuthal number m of pulsation modes. We verify the results by an ensemble study of ten systems. We discuss some future prospects, including the secular evolution and the non-linear effect of TEOs.
331 - Jian-wen Ou , Cong Yu , Ming Yang 2021
Apsidal motion is a gradual shift in the position of periastron. The impact of dynamic tides on apsidal motion has long been debated, because the contribution could not be quantified due to the lack of high quality observations. KIC 4544587 with tida lly excited oscillations has been observed by textit{Kepler} high-precision photometric data based on long time baseline and short-cadence schema. In this paper, we compute the rate of apsidal motion that arises from the dynamic tides as $19.05pm 1.70$ mrad yr$^{-1}$ via tracking the orbital phase shifts of tidally excited oscillations. We also calculate the procession rate of the orbit due to the Newtonian and general relativistic contribution as $21.49 pm 2.8$ and $2.4 pm 0.06$ mrad yr$^{-1}$, respectively. The sum of these three factors is in excellent agreement with the total observational rate of apsidal motion $42.97 pm 0.18$ mrad yr$^{-1}$ measured by eclipse timing variations. The tidal effect accounts for about 44% of the overall observed apsidal motion and is comparable to that of the Newtonian term. Dynamic tides have a significant contribution to the apsidal motion. The analysis method mentioned in this paper presents an alternative approach to measuring the contribution of the dynamic tides quantitatively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا