ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous scaling of fermions and order parameter fluctuations at quantum criticality

101   0   0.0 ( 0 )
 نشر من قبل Philipp Strack
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quantum phase transition between a semimetal and a superfluid in a model of attractively interacting fermions with a linear dispersion. The quantum critical properties of this model cannot be treated by the Hertz-Millis approach since integrating out the fermions leads to a singular Landau-Ginzburg order parameter functional. We therefore derive and solve coupled renormalization group equations for the fermionic degrees of freedom and the bosonic order parameter fluctuations. In two spatial dimensions, fermions and bosons acquire anomalous scaling dimensions at the quantum critical point, associated with non-Fermi liquid behavior and non-Gaussian order parameter fluctuations.



قيم البحث

اقرأ أيضاً

In this chapter we discuss aspects of the quantum critical behavior that occurs at a quantum phase transition separating a topological phase from a conventionally ordered one. We concentrate on a family of quantum lattice models, namely certain defor mations of the toric code model, that exhibit continuous quantum phase transitions. One such deformation leads to a Lorentz-invariant transition in the 3D Ising universality class. An alternative deformation gives rise to a so-called conformal quantum critical point where equal-time correlations become conformally invariant and can be related to those of the 2D Ising model. We study the behavior of several physical observables, such as non-local operators and entanglement entropies, that can be used to characterize these quantum phase transitions. Finally, we briefly consider the role of thermal fluctuations and related phase transitions, before closing with a short overview of field theoretical descriptions of these quantum critical points.
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an x-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pr essure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase, and, in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the longstanding expectations of enhanced quantum fluctuations in low dimensional systems, and may help to constrain theories of the quantum critical Fermi surface.
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show that at an conformally-invariant critical point of O(3) transition, the entanglement entropy exhibits universal scaling behavior of area law with logarithmic corner corrections and the obtained correction exponent represents the current central charge of the critical theory. Then we move on to the deconfined quantum critical point, where although we still observe similar scaling behavior but with a very different exponent. Namely, the corner correction exponent is found to be negative. Such a negative exponent is in sharp contrast with positivity condition of the Renyi entanglement entropy, which holds for unitary conformal field theories. Our results unambiguously reveal fundamental differences between DQC and QCPs described by unitary CFTs.
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte C arlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Ne el and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا