ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment

107   0   0.0 ( 0 )
 نشر من قبل Alexander Kozlov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Kozlov




اسأل ChatGPT حول البحث

Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.

قيم البحث

اقرأ أيضاً

94 - Riccardo Farinelli 2019
The third generation of the Beijing Electron Spectrometer, BESIII, is an apparatus for high energy physics research. The hunting of new particles and the measurement of their properties or the research of rare processes are sought to understand if th e measurements confirm the Standard Model and to look for physics beyond it. The detectors ensure the reconstruction of events belonging to the sub-atomic domain. The operation and the efficiency of the BESIII inner tracker is compromised due to the the radiation level of the apparatus. A new detector is needed to guarantee better performance and to improve the physics research. A cylindrical triple-GEM detector (CGEM) is an answer to this need: it will maintain the excellent performance of the inner tracker while improving the spatial resolution in the beam direction allowing a better reconstruction of secondary vertices. The technological challenge of the CGEM is related in its spatial limitation and the needed cylindrical shape. At the same time the detector has to ensure an efficiency close to 1 and a stable spatial resolution better than 150 $mu$m, independently from the track incident angle and the presence of 1 T magnetic field. In the years 2014-2018 the CGEM-IT has been designed and built. Through several test beam and simulations the optimal configuration from the geometrical and electrical points of view has been found. This allows to measure the position of the charged particle interacting with the CGEM-IT. Two algorithms have been used for this purpose, the charge centroid and the $mu$TPC, a new technique introduced by ATLAS in MicroMegas and developed here for the first time for triple-GEM detector. A complete triple-GEM simulation software has been developed to improve the knowledge of the detection processes. The software reproduces the CGEM-IT behavior in the BESIII offline software.
Argon with an admixture of CF4 is expected to be a good candidate for the gas mixture to be used for a time projection chamber (TPC) in the future linear collider experiment because of its small transverse diffusion of drift electrons especially unde r a strong magnetic field. In order to confirm the superiority of this gas mixture over conventional TPC gases we carried out cosmic ray tests using a GEM-based TPC operated mostly in Ar-CF4-isobutane mixtures under 0 - 1 T axial magnetic fields. The measured gas properties such as gas gain and transverse diffusion constant as well as the observed spatial resolution are presented.
An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC) . The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5$times10^{34}$ cm$^{-2}$ s$^{-1}$. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from $10^{-11}$ to $10^{4}$ MeV for neutrons, $10^{-3}$ to $10^{4}$ MeV for $gamma$s, $10^{-2}$ to $10^{4}$ MeV for $e^{pm}$, and $10^{-1}$ to $10^{4}$ MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.
Performance of triple GEM prototypes has been evaluated by means of a muon beam at the H4 line of the SPS test area at CERN. The data from two planar prototypes have been reconstructed and analyzed offline with two clusterization methods: the enter o f gravity of the charge distribution and the micro Time Projection Chamber (muTPC). Concerning the spatial resolution, the charge centroid cluster reconstruction performs extremely well with no magnetic field: the resolution is well below 100 mum . Increasing the magnetic field intensity, the resolution degrades almost linearly as effect of the Lorentz force that displaces, broadens and asymmetrizes the electron avalanche. Tuning the electric fields of the GEM prototype we could achieve the unprecedented spatial resolution of 190 mum at 1 Tesla. In order to boost the spatial resolution with strong magnetic field and inclined tracks a muTPC cluster reconstruction has been investigated. Such a readout mode exploits the good time resolution of the GEM detector and electronics to reconstruct the trajectory of the particle inside the conversion gap. Beside the improvement of the spatial resolution, information on the track angle can be also extracted. The new clustering algorithm has been tested with diagonal tracks with no magnetic field showing a resolution between 100 um and 150 um for the incident angle ranging from 10{deg} to 45{deg} . Studies show similar performance with 1 Tesla magnetic field. This is the first use of a muTPC readout with a triple GEM detector in magnetic field. This study has shown that a combined readout is capable to guarantee stable performance over a broad spectrum of particle momenta and incident angles, up to a 1 Tesla magnetic field.
Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy re solution of 20%$div$30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 $mu$m. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا