ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated optical and gamma emissions from GRB 081126

72   0   0.0 ( 0 )
 نشر من قبل Michel Boer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alain Klotz




اسأل ChatGPT حول البحث

We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, using BAT data from the Swift spacecraft, and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time lag of 8.4 $pm$ 3.9 s. This is the first well-resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma-ray burst early emissions. Furthermore, observations of time lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

قيم البحث

اقرأ أيضاً

84 - R. Sagar 2000
The CCD magnitudes in Cousins R and I photometric passbands are determined for GRB 991216 and GRB 991208 afterglows respectively about 1 and about 3 day after trigger of the corresponding gamma-ray bursts. Light curves of the afterglow emissions are obtained by combining the published data with the present measurements in R and I passbands for GRB 991208 and in R, Gunn I and J passbands for GRB 991216. They indicate that the flux decay constants of a GRB are almost the same in each passband with values about 2.2 for GRB 991208 and about 1.2 for GRB 991216 indicating very fast optical flux decay in the case of former which may be due to beaming effect. However, cause of steepening by 0.23 +/- 0.06 dex in the R light curve of GRB 991216 afterglow between 2 to 2.5 day after the burst, is presently not understood. Redshift determinations indicate that both GRBs are at cosmological distance with a value of 4.2 Gpc for GRB 991208 and 6.2 Gpc for GRB 991216. The observed fluence above 20 keV indicates, if isotropic, release of energy about 1.3 x 10^{53} erg for GRB 991208 and about 6.7 x 10^{53} erg for GRB 991216 by these bright gamma-ray flashes. The enormous amount of released energy will be reduced, if the radiation is beamed which seems to be case for GRB 991208 afterglow.The quasi-simultaneous broad-band photometric spectral energy distributions of the afterglows are determined about 8.5 day and about 35 hour after the bursts of GRB 991208 and GRB 991216 respectively.The flux decreases exponentially with frequency. The value of spectral index in the optical-near IR region is -0.75 +/- 0.03 for GRB 991208 and -1.0 +/- 0.12 for GRB 991216.
The early optical emission of the moderately high redshift ($z=3.08$) GRB 060607A shows a remarkable broad and strong peak with a rapid rise and a relatively slow power-law decay. It is not coincident with the strong early-time flares seen in the X-r ay and gamma-ray energy bands. There is weak evidence for variability superposed on this dominant component in several optical bands that can be related to flares in high energy bands. While for a small number of GRBs, well-sampled optical flares have been observed simultaneously with X-ray and gamma ray pulses, GRB 060607A is one of the few cases where the early optical emission shows no significant evidence for correlation with the prompt emission. In this work we first report in detail the broad band observations of this burst by Swift. Then by applying a simple model for the dynamics and the synchrotron radiation of a relativistic shock, we show that the dominant component of the early emissions in optical wavelengths has the same origin as the tail emission produced after the main gamma ray activity. The most plausible explanation for the peak in the optical light curve seems to be the cooling of the prompt after the main collisions, shifting the characteristic synchrotron frequency to the optical bands. It seems that the cooling process requires a steepening of the electron energy distribution and/or a break in this distribution at high energies. The sharp break in the X-ray light curve at few thousands of seconds after the trigger, is not observed in the IR/optical/UV bands, and therefore can not be a jet break. Either the X-ray break is due to a change in the spectrum of the accelerated electrons or the lack of an optical break is due to the presence of a related delayed response component (Abbreviated).
The optical light that is generated simultaneously with the x-rays and gamma-rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse to form black holes. We report on the bright optic al flash and fading afterglow from the powerful burst GRB 130427A and present a comparison with the properties of the gamma-ray emission that show correlation of the optical and >100 MeV photon flux light curves during the first 7,000 seconds. We attribute this correlation to co-generation in an external shock. The simultaneous, multi-color, optical observations are best explained at early times by reverse shock emission generated in the relativistic burst ejecta as it collides with surrounding material and at late times by a forward shock traversing the circumburst environment. The link between optical afterglow and >100 MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying GRB emission at GeV/TeV energies.
84 - A. Panaitescu 2014
We calculate the synchrotron and inverse-Compton emissions from pairs formed in GRB afterglows from high-energy photons (above 100 MeV), assuming a power-law photon spectrum C_nu ~ nu^{-2} and considering only the pairs generated from primary high-en ergy photons. The essential properties of these pairs (number, minimal energy, cooling energy, distribution with energy) and of their emission (peak flux, spectral breaks, spectral slope) are set by the observables GeV fluence Phi (t) = Ft and spectrum, and by the Lorentz factor Gamma and magnetic field B of the source of high-energy photons, at observer-time t. Optical and X-ray pseudo--light-curves F_nu (Gamma) are calculated for given B; proper synchrotron self-Compton light-curves are calculated by setting the dynamics Gamma(t) of the high-energy photons source to be that of a decelerating, relativistic shock. It is found that the emission from pairs can accommodate the flux and decays of the optical flashes measured during the prompt (GRB) phase and of the faster-decaying X-ray plateaus observed during the delayed (afterglow) phase. The brightest pair optical emission is obtained for 100 < Gamma < 500, and depends mostly on the GeV fluence, being independent of the source redshift. Emission from pairs formed during the GRB phase offers an alternate explanation to reverse-shock optical flashes. These two models may be distinguished based on their corresponding flux decay index--spectral slope relations, different correlations with the LAT fluence, or through modeling of the afterglow multiwavelength data.
126 - J. Takata 2014
We study mechanisms of multi-wavelength emissions (X-ray, GeV and TeV gamma-rays) from the gamma-ray binary LS~5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using four year data of fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in $sim$100-300 MeV bands and $>10$GeV bands are significantly improved. The present data analysis suggests that the 0.1-100GeV emissions from LS~5039 contain three different components; (i) the first component contributes to $<$1GeV emissions around superior conjunction, (ii) the second component dominates in 1-10GeV energy bands and (iii) the third component is compatible to lower energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS~5039 includes a pulsar, we argue that both emissions from magnetospheric outer gap and inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock; Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at Shock-II region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا