ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal behaviour of emissions from Gamma-ray bursts and optical/near-IR afterglows of GRB 991208 and GRB 991216

85   0   0.0 ( 0 )
 نشر من قبل Pr. Ram sagar
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Sagar




اسأل ChatGPT حول البحث

The CCD magnitudes in Cousins R and I photometric passbands are determined for GRB 991216 and GRB 991208 afterglows respectively about 1 and about 3 day after trigger of the corresponding gamma-ray bursts. Light curves of the afterglow emissions are obtained by combining the published data with the present measurements in R and I passbands for GRB 991208 and in R, Gunn I and J passbands for GRB 991216. They indicate that the flux decay constants of a GRB are almost the same in each passband with values about 2.2 for GRB 991208 and about 1.2 for GRB 991216 indicating very fast optical flux decay in the case of former which may be due to beaming effect. However, cause of steepening by 0.23 +/- 0.06 dex in the R light curve of GRB 991216 afterglow between 2 to 2.5 day after the burst, is presently not understood. Redshift determinations indicate that both GRBs are at cosmological distance with a value of 4.2 Gpc for GRB 991208 and 6.2 Gpc for GRB 991216. The observed fluence above 20 keV indicates, if isotropic, release of energy about 1.3 x 10^{53} erg for GRB 991208 and about 6.7 x 10^{53} erg for GRB 991216 by these bright gamma-ray flashes. The enormous amount of released energy will be reduced, if the radiation is beamed which seems to be case for GRB 991208 afterglow.The quasi-simultaneous broad-band photometric spectral energy distributions of the afterglows are determined about 8.5 day and about 35 hour after the bursts of GRB 991208 and GRB 991216 respectively.The flux decreases exponentially with frequency. The value of spectral index in the optical-near IR region is -0.75 +/- 0.03 for GRB 991208 and -1.0 +/- 0.12 for GRB 991216.

قيم البحث

اقرأ أيضاً

78 - D. A. Kann , S. Klose , B. Zhang 2011
We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglow s of Type II GRBs, we find that those of Type I GRBs have a lower average luminosity and show an intrinsic spread of luminosities at least as wide. From late and deep upper limits on the optical transients, we establish limits on the maximum optical luminosity of any associated supernova, confirming older works and adding new results. We use deep upper limits on Type I GRB optical afterglows to constrain the parameter space of possible mini-SN emission associated with a compact-object merger. Using the prompt emission data, we search for correlations between the parameters of the prompt emission and the late optical afterglow luminosities. We find tentative correlations between the bolometric isotropic energy release and the optical afterglow luminosity at a fixed time after trigger (positive), and between the host offset and the luminosity (negative), but no significant correlation between the isotropic energy release and the duration of the GRBs. We also discuss three anomalous GRBs, GRB 060505, GRB 060614, and GRB 060121, in the light of their optical afterglow luminosities. (Abridged)
72 - Alain Klotz 2009
We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, using BAT data from the Swift spacecraft, and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time lag of 8.4 $pm$ 3.9 s. This is the first well-resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma-ray burst early emissions. Furthermore, observations of time lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.
118 - F. Nappo 2014
About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the quasi-quiescent phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode crashes with this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We apply this new model to GRB 091024, an event with a precursor in the prompt light curve and two well defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.
We report on two recent z~4 gamma-ray bursts (GRBs), GRB 060206 and GRB 060210, for which we have obtained well-sampled optical light curves. Our data, combined with early optical data reported in the literature, shows unusual behavior for both after glows. In R-band GRB 060206 (z=4.045) experienced a slow early decay, followed by a rapid increase in brightness by factor ~2.5 about 1 hour after the burst. Its afterglow then faded in a broken power-law fashion, with a smooth break at t_b=0.6 days, but with additional, less dramatic (~10%) ``bumps and wiggles, well detected in the densely sampled light curve. The R-band afterglow of GRB 060210 (z=3.91) is also unusual: the light curves was more or less flat between 60 and 300 sec after the burst, followed by ~70% increase at ~600 sec after the burst, after which the light curve declined as a t^{-1.3} power-law. Despite earlier reports to the contrary, we find that for GRB 060206 X-rays also more or less follow the optical decay, but with significant variations on short timescales. However, the X-ray afterglow is contaminated by a nearby, variable source, which especially at late times obscures the behavior of the X-ray afterglow. We argue that ``anomalous optical afterglows are likely to be the norm, and that the rapid variations often seen in Swift-XRT data would also be seen in the optical light curves, given good enough sampling. As a result, some of the often employed procedures, such as deriving the jet opening angle using a smooth broken power-law fit to the optical light curves, in many cases might have a poor statistical significance. We argue that the early increase in brighness for both bursts might be due to the turn-on of the external shock. Existence of such features could provide valuable additional information about the burst. (Abridged)
63 - S. Holland 2000
We have collected all of the published photometry for GRB 990123 and GRB 990510, the first two gamma-ray bursts where breaks were seen in the light curves of their optical afterglows, and determined the shapes of their light curves and the break time s. These parameters were used to investigate the physical mechanisms responsible for the breaks and the nature of the ambient medium that the bursts occurred in. The light curve for GRB 990123 is best fit by a broken power law with a break 1.68 +/- 0.19 days after the burst, a slope of alpha1 = -1.12 +/- 0.08 before the break, and a slope of alpha2 = -1.69 +/- 0.06 after the break. This is consistent with a collimated outflow with a fixed opening angle (theta0) of approximately five degrees. In this case the break in the light curve is due to the relativistic fireball slowing to a gamma factor of approximately 1 / theta0. The light curve for GRB 990510 is best fit by a continuous function with an early-time slope of alpha1 = -0.54 +/- 0.14, a late-time slope of alpha2 = -1.98 +/- 0.19, and a slow transition between the two regimes approximately one day after the burst. This is consistent with a collimated outflow with an opening angle of approximately five degrees that is initially radiative, but undergoes a sideways expansion that begins approximately one day after the burst. This sideways expansion is responsible for the slow break in the light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا