ﻻ يوجد ملخص باللغة العربية
The probability of a random walker to return to its starting point in dimensions one and two is unity, a theorem first proven by G. Polya. The recurrence probability -- the probability to be found at the origin at a time t, is a power law with a critical exponent d/2 in dimensions d=1,2. We report an experiment that directly measures the Laplace transform of the recurrence probability in one dimension using Electromagnetically Induced Transparency (EIT) of coherent atoms diffusing in a vapor-cell filled with buffer gas. We find a regime where the limiting form of the complex EIT spectrum is universal and only depends on the effective dimensionality in which the random recurrence takes place. In an effective one-dimensional diffusion setting, the measured spectrum exhibits power law dependence over two decades in the frequency domain with a critical exponent of 0.56 close to the expected value 0.5. Possible extensions to more elaborate diffusion schemes are briefly discussed.
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accoun
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the - suitably centered - empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a rando
Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we inves
The following question is the subject of our work: could a two-dimensional random path pushed by some constraints to an improbable large deviation regime, possess extreme statistics with one-dimensional Kardar-Parisi-Zhang (KPZ) fluctuations? The ans