ﻻ يوجد ملخص باللغة العربية
Collisions with background gas particles can shift the resonance frequencies of atoms in atomic clocks. The internal quantum states of atoms can also become entangled with their motional states due to the recoil imparted by a collision, which leads to a further shift of the clock frequency through the relativistic Doppler shift. It can be complicated to evaluate the Doppler and collisional frequency shifts for clock atoms in such entangled states, but estimates of these shifts are essential in order to improve the accuracy of optical atomic clocks. We present a formalism that describes collisions and relativistic Doppler shifts in a unified manner, and can therefore be used to accurately estimate collisional frequency shifts in trapped-atom clocks.
We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock with bosonic 88Sr. The lattice clock is referenced to the highly forbidden transition 1S0 - 3P0 at 698 nm, which becomes weakly allo
We analyze both the s- and p-wave collision induced frequency shifts and propose a over-$pi$ pulse scheme to cancel the shifts in optical lattice clocks interrogated by a Rabi pulse. The collisional frequency shifts are analytically solved as a funct
Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution to the total systematic unce
Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a non-perturbative framework based on a quantum channel description of the scattering process, and use it to derive a master eq
We investigate the excitation of the 5D_{5/2} level in Rb atoms using counter-propagating laser beams, which are nearly resonant to the one-photon 5S_{1/2} - 5P_{3/2} and 5P_{3/2} - 5D_{5/2} transitions, ensuring that a sum of the optical frequencies