ترغب بنشر مسار تعليمي؟ اضغط هنا

Experiment for Testing Special Relativity Theory

111   0   0.0 ( 0 )
 نشر من قبل Gennadii Kotel'nikov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An experiment aimed at testing special relativity via a comparison of the velocity of a non matter particle (annihilation photon) with the velocity of the matter particle (Compton electron) produced by the second annihilation photon from the decay Na-22(beta^+)Ne-22 is proposed.



قيم البحث

اقرأ أيضاً

128 - Oleg Titov , Hana Krasna 2018
Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity $V$ of 30 km/s, VLBI proves to be a handy tool to detect the subtle effects of the special and general relativity theory with a magnitude of $(V/textrm{c})^2$. The theoretical correction for the second order terms reaches up to 300~ps, and it is implemented in the geodetic VLBI group delay model. The total contribution of the second order terms splits into two effects - the variation of the Earth scale, and the deflection of the apparent position of the radio source. The Robertson-Mansouri-Sexl (RMS) generalization of the Lorenz transformation is used for many modern tests of the special relativity theory. We develop an alteration of the RMS formalism to probe the Lorenz invariance with the geodetic VLBI data. The kinematic approach implies three parameters (as a function of the moving reference frame velocity) and the standard Einstein synchronisation. A generalised relativistic model of geodetic VLBI data includes all three parameters that could be estimated. Though, since the modern laboratory Michelson-Morley and Kennedy-Thorndike experiments are more accurate than VLBI technique, the presented equations may be used to test the VLBI group delay model itself.
Potassium-40 (${}^{40}$K) is a background in many rare-event searches and may well play a role in interpreting results from the DAMA dark-matter search. The electron-capture decay of ${}^{40}$K to the ground state of ${}^{40}$Ar has never been measur ed and contributes an unknown amount of background. The KDK (potassium decay) collaboration will measure this branching ratio using a ${}^{40}$K source, an X-ray detector, and the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory.
130 - Davide Chiesa 2017
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. The construction of the experiment and, in particular, the installation of all towers in the cryostat was completed in August 2016, followed by the cooldown to base temperature at the beginning of 2017. The CUORE detector is now operational and has been taking science data since Spring 2017. We present here the initial performance of the detector and the preliminary results from the first detector run.
The UCNA experiment was designed to measure the neutron $beta$-asymmetry parameter $A_0$ using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for $A_0$ was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008--2009, 2010, and 2011--2013, which ultimately culminated in a 0.67% precision result for $A_0$.
CUPID-0 is the first large mass array of enriched Zn$^{82}$Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg yr. Thanks to the excellent rejection of $alpha$ particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of $^{82}$Se neutrinoless double beta decay. In this work we develop a model to reconstruct the CUPID-0 background over the whole energy range of experimental data. We identify the background sources exploiting their distinctive signatures and we assess their extremely low contribution (down to $sim10^{-4}$ counts/(keV kg yr)) in the region of interest for $^{82}$Se neutrinoless double beta decay search. This result represents a crucial step towards the comprehension of the background in experiments based on scintillating calorimeters and in next generation projects such as CUPID.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا