ﻻ يوجد ملخص باللغة العربية
The UCNA experiment was designed to measure the neutron $beta$-asymmetry parameter $A_0$ using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for $A_0$ was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008--2009, 2010, and 2011--2013, which ultimately culminated in a 0.67% precision result for $A_0$.
The neutron $beta$-decay asymmetry parameter $A_0$ defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines $lambda=frac{g_{A}}{g_{V}}$, the ratio of the axial-vector to vector weak coupling c
We present a detailed report of a measurement of the neutron $beta$-asymmetry parameter $A_0$, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN w
It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle ($chi$) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of
The Ultracold Neutron Asymmetry (UCNA) experiment was designed to measure the $beta$-decay asymmetry parameter, $A_0$, for free neutron decay. In the experiment, polarized ultracold neutrons are transported into a decay trap, and their $beta$-decay e
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and ligh