ﻻ يوجد ملخص باللغة العربية
Inclusive jet production data are important for constraining the gluon distribution in the global QCD analysis of parton distribution functions. With the addition of recent CDF and D0 Run II jet data, we study a number of issues that play a role in determining the up-to-date gluon distribution and its uncertainty, and produce a new set of parton distributions that make use of that data. We present in detail the general procedures used to study the compatibility between new data sets and the previous body of data used in a global fit. We introduce a new method in which the Hessian matrix for uncertainties is ``rediagonalized to obtain eigenvector sets that conveniently characterize the uncertainty of a particular observable.
We report on an extensive global QCD analysis of new DIS and hadronic inclusive jet production data emphasizing the impact of these recent data on the determination of the gluon distribution, and on the interpretation of the high $E_t$ jets highlight
The nuclear parton distribution functions (nPDFs) of gluons are known to be difficult to determine with fits of deep inelastic scattering (DIS) and Drell-Yan (DY) data alone. Therefore, the nCTEQ15 analysis of nuclear PDFs added inclusive neutral pio
Using momentum sum rule for evolution equations for Double Parton Distribution Functions (DPDFs) in the leading logarithmic approximation, we find that the double gluon distribution function can be uniquely constrained via the single gluon distributi
A precise knowledge of nuclear parton distribution functions (nPDFs) is -- among other things -- important for the unambiguous interpretation of hard process data taken in pA and AA collisions at the Relativistic Heavy Ion Collider (RHIC) and the Lar
Jets physics in heavy ion reactions is an important new area of active research at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC) that paves the way for novel tests of QCD multi-parton dynamics in dense nuclear matt