ﻻ يوجد ملخص باللغة العربية
We present 24 micron photometry of the intermediate-age open cluster Praesepe. We assemble a catalog of 193 probable cluster members that are detected in optical databases, the Two Micron All Sky Survey (2MASS), and at 24 micron, within an area of ~ 2.47 square degrees. Mid-IR excesses indicating debris disks are found for one early-type and for three solar-type stars. Corrections for sampling statistics yield a 24 micron excess fraction (debris disk fraction) of 6.5 +- 4.1% for luminous and 1.9 +- 1.2% for solar-type stars. The incidence of excesses is in agreement with the decay trend of debris disks as a function of age observed for other cluster and field stars. The values also agree with those for older stars, indicating that debris generation in the zones that emit at 24 micron falls to the older 1-10 Gyr field star sample value by roughly 750 Myr. We discuss our results in the context of previous observations of excess fractions for early- and solar-type stars. We show that solar-type stars lose their debris disk 24 micron excesses on a shorter timescale than early-type stars. Simplistic Monte Carlo models suggest that, during the first Gyr of their evolution, up to 15-30% of solar-type stars might undergo an orbital realignment of giant planets such as the one thought to have led to the Late Heavy Bombardment, if the length of the bombardment episode is similar to the one thought to have happened in our Solar System. In the Appendix, we determine the clusters parameters via boostrap Monte Carlo isochrone fitting, yielding an age of 757 Myr (+- 36 Myr at 1 sigma confidence) and a distance of 179 pc (+- 2 pc at 1 sigma confidence), not allowing for systematic errors.
We have analyzed Spitzer and NASA/IRTF 2 - 35 mum spectra of the warm, ~350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 pm 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ~3 AU from the cent
Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar
Context. Debris disks have commonly been studied around intermediate-mass stars. Their intense radiation fields are believed to efficiently remove the small dust grains that are constantly replenished by collisions. For lower-mass stars, in particula
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with hi
We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose pres- ence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, an