ترغب بنشر مسار تعليمي؟ اضغط هنا

Ram pressure drag - the effects of ram pressure on dark matter and stellar disk dynamics

114   0   0.0 ( 0 )
 نشر من قبل Rory Smith Mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of ram pressure stripping on gas-rich disk galaxies in the cluster environment. Ram pressure stripping principally effects the atomic gas in disk galaxies, stripping away outer disk gas to a truncation radius. We demonstrate that the drag force exerted on truncated gas disks is passed to the stellar disk, and surrounding dark matter through their mutual gravity. Using a toy model of ram pressure stripping, we show that this can drag a stellar disk and dark matter cusp off centre within its dark matter halo by several kiloparsecs. We present a simple analytical description of this process that predicts the drag force strength and its dependency on ram pressures and disk galaxy properties to first order. The motion of the disk can result in temporary deformation of the stellar disk. However we demonstrate that the key source of stellar disk heating is the removal of the gas potential from within the disk. This can result in disk thickening by approximately a factor of two in gas-rich disks.

قيم البحث

اقرأ أيضاً

90 - E. Roediger 2009
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira l galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
(Abridged) We perform high resolution 2D hydrodynamical simulations of face-on ram pressure stripping (RPS) of disk galaxies to compile a comprehensive parameter study varying galaxy properties (mass, vertical structure of the gas disk) and covering a large range of ICM conditions, reaching from high density environments like in cluster centres to low density environments typical for cluster outskirts or groups. We find that the ICM-ISM interaction proceeds in three phases: firstly the instantaneous stripping phase, secondly the dynamic intermediate phase, thirdly the quasi-stable continuous viscous stripping phase. The stripping efficiency depends slightly on the Mach number of the flow, however, the main parameter is the ram pressure. The stripping efficiency does not depend on the vertical structure and thickness of the gas disk. We discuss uncertainties in the classic estimate of the stripping radius of citet{gunn72}, and adapt the estimate used by cite{mori00} for spherical galaxies, (comparison of central pressure with ram pressure). We find that the latter estimate predicts the radius and mass of the gas disk remaining at the end of the second phase very well, and better than the citet{gunn72} criterion. From our simulations we conclude that gas disks of galaxies in high density environments are heavily truncated or even completely stripped, but also the gas disks of galaxies in low density environments are disturbed by the flow and back-falling material, so that they should also be pre-processed.
80 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inc lination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multi-phase interstellar medium (ISM) maintained by strong stellar feedback. We carry out radiation-hydrodynamics simulation s of an isolated disk galaxy embedded in a 10^11 Msun dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure-stripped galaxies, depending on the strength of the winds. HI and H$_2$ in the outer galactic disk are significantly stripped in the presence of the moderate winds, whereas turbulent pressure provides support against ram pressure in the central region where star formation is active. Moderate ICM winds facilitate gas collapsing, increasing the total star formation rates by ~40% when the wind is oriented face-on or ~80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing the star formation by a factor of two within ~200 Myr. Dense gas clumps with N_H > 10 Msun pc^-2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T=10^6K, only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.
The formation mechanism of tidal dwarf galaxies means they are expected to contain little or no dark matter. As such, they might be expected to be very sensitive to their environment. We investigate the impact of ram pressure on tidal dwarf galaxies in a parameter study, varying dwarf galaxy properties and ram pressures. We submit model tidal dwarf galaxies to wind-tunnel style tests using a toy ram pressure model. The effects of ram pressure are found to be substantial. If tidal dwarf galaxies have their gas stripped, they may be completely destroyed. Ram pressure drag causes acceleration of our dwarf galaxy models, and this further enhances stellar losses. The dragging can also cause stars to lie in a low surface brightness stellar stream that points in the opposite direction to the stripped gas, in a manner distinctive from tidal streams. We investigate the effects of ram pressure on surface density profiles, the dynamics of the stars, and discuss the consequences for dynamical mass measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا