ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposing numerical ranges along with spectral sets

227   0   0.0 ( 0 )
 نشر من قبل Franciszek Szafraniec
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف F.H. Szafraniec




اسأل ChatGPT حول البحث

This note is to indicate the new sphere of applicability of the method developed by Mlak as well as by the author. Restoring those ideas is summoned by current developments concerning $K$-spectral sets on numerical ranges.



قيم البحث

اقرأ أيضاً

A complete description of 4-by-4 matrices $begin{bmatrix}alpha I & C D & beta Iend{bmatrix}$, with scalar 2-by-2 diagonal blocks, for which the numerical range is the convex hull of two non-concentric ellipses is given. This result is obtained by red uction to the leading special case in which $C-D^*$ also is a scalar multiple of the identity. In particular cases when in addition $alpha-beta$ is real or pure imaginary, the results take an especially simple form. An application to reciprocal matrices is provided.
This paper extends Kreins spectral shift function theory to the setting of semifinite spectral triples. We define the spectral shift function under these hypotheses via Birman-Solomyak spectral averaging formula and show that it computes spectral flow.
We describe here the higher rank numerical range, as defined by Choi, Kribs and Zyczkowski, of a normal operator on an infinite dimensional Hilbert space in terms of its spectral measure. This generalizes a result of Avendano for self-adjoint operato rs. An analogous description of the numerical range of a normal operator by Durszt is derived for the higher rank numerical range as an immediate consequence. It has several interesting applications. We show using Durszts example that there exists a normal contraction $T$ for which the intersection of the higher rank numerical ranges of all unitary dilations of $T$ contains the higher rank numerical range of $T$ as a proper subset. Finally, we strengthen and generalize a result of Wu by providing a necessary and sufficient condition for the higher rank numerical range of a normal contraction being equal to the intersection of the higher rank numerical ranges of all possible unitary dilations of it.
The higher rank numerical ranges of generic matrices are described in terms of the components of their Kippenhahn curves. Cases of tridiagonal (in particular, reciprocal) 2-periodic matrices are treated in more detail.
In this note the notions of trace compatible operators and infinitesimal spectral flow are introduced. We define the spectral shift function as the integral of infinitesimal spectral flow. It is proved that the spectral shift function thus defined is absolutely continuous and Kreins formula is established. Some examples of trace compatible affine spaces of operators are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا